Publication:
Analitik örtü dönüşümleri ve modüler fonksiyonlara uygulanması

dc.contributor.advisorYamankaradeniz, Mümin
dc.contributor.authorİnam, İlker
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.date.accessioned2019-12-30T06:55:46Z
dc.date.available2019-12-30T06:55:46Z
dc.date.issued2005-08-26
dc.description.abstractÜç bölümden oluşan bu çalışmada örtü uzayları, analitik örtü uzayları, modüler fonksiyon ve modüler fonksiyonun örtü dönüşümlerine uygulamaları ele alınmıştır. Birinci bölümde ilerideki bölümlere hazırlık olması amacıyla bazı temel kavramlar tanıtılmıştır. Ayrıca ikinci ve üçüncü bölümdeki teoremlerin ispatlarında kullanılmak üzere bazı önemli teoremler ispatsız olarak verilmiştir. İkinci bölüme örtü dönüşümü yardımıyla elde edilen örtü uzayları tanıtılarak başlanmıştır. Ardından örtü uzaylarının önemli bir özelliği olan, örtülen uzaydaki her bir eğrinin örtü uzayındaki bir eğriye yükseltilebilmesi özelliği ve bunun sonuçları ele alınmıştır. Bunun yanı sıra son olarak, bu bölümde analitik örtü dönüşümleri ve analitik örtü uzayları kavramları incelenmiştir. Burada evrensel örtü uzayı tanımlanmış ve bunun çok önemli sonuçları verilmiştir. Üçüncü bölümde, öncelikle modüler grup ve bunun bir elemanı olan modüler fonksiyon tanıtılmış ve örtü uzayları ile bağlantısı araştırılmıştır. Bunun sonucunda modüler fonksiyon yardımıyla üst yarı düzlemin, C0,1 in bir örtü uzayı olduğu elde edilmiştir. Ardından modüler fonksiyonun örtü uzaylarına bir uygulaması olarak üst yarı düzlemin bir döşemesi ele alınmıştır. Bunun yanı sıra C. E. Picard’a (1856-1941) ithaf edilen önemli iki teorem incelenmiştir. Son olarak evrensel analitik örtü uzaylarının varlığı hakkında gerek ve yeter şartlar verilmiştir.
dc.description.abstractCovering spaces, analytic covering spaces, modular function and applications of the modular function to covering maps are considered in this work, consisting of three sections. In the first section some fundamental concepts are introduced for the next sections. In addition, some important theorems are given without proofs, to be used in the second and the third sections. The second section begins with covering spaces which are obtained from covering maps. And then the fact that every path in the covered space can be lifted to a path in the covering space, which is an important feature of the covering spaces, is given. Finally in this section, analytic covering maps and anaytic covering spaces are examined. Here, the universal covering space is defined and its consequences which are very important are given. In the third section, firstly modular group and a special element of it, the modular function, are introduced and the connection with covering spaces is investigated. As a consequence of this, the fact that upper half plane is the covering space of C0,1 is obtained. Then as an application of the modular function to covering maps, a tessellation of the upper half plane is considered. However two important theorems dedicated to C. E. Picard (1856-1941) are given. Lastly necessary and sufficient conditions for the existence of the universal analytic covering spaces are given.
dc.format.extentV, 59 sayfa
dc.identifier.citationİnam, İ. (2005). Analitik örtü dönüşümleri ve modüler fonksiyonlara uygulanması. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/4590
dc.language.isotr
dc.publisherUludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectÖrtü dönüşümü
dc.subjectÖrtü uzayı
dc.subjectModüler grup
dc.subjectModüler fonksiyon
dc.subjectEvrensel örtü uzayı
dc.subjectAnalitik örtü dönüşümü
dc.subjectAnalitik örtü uzayı
dc.subjectDöşeme
dc.subjectEvrensel analitik örtü uzayı
dc.subjectYükseltilme
dc.subjectCovering map
dc.subjectCovering space
dc.subjectModular group
dc.subjectModular function
dc.subjectUniversal covering space
dc.subjectAnalytic covering map
dc.subjectAnalytic covering space
dc.subjectTessellation
dc.subjectUniversal analytic covering space
dc.subjectLifting
dc.titleAnalitik örtü dönüşümleri ve modüler fonksiyonlara uygulanması
dc.title.alternativeAnalytic covering maps and application for the modular functions
dc.typemasterThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Matematik Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
198644.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: