Publication:
A new extension of q-Euler numbers and polynomials related to their interpolation functions

Thumbnail Image

Organizational Units

Authors

Özen, Hacer

Authors

Şimşek, Yılmaz

Advisor

Language

Publisher:

Pergamon-Elsevier Science

Journal Title

Journal ISSN

Volume Title

Abstract

In this work, by using a p-adic q-Volkenborn integral, we construct a new approach to generating functions of the (h, q)-Euler numbers and polynomials attached to a Dirichlet character x. By applying the Mellin transformation and a derivative operator to these functions, we define (h, q)-extensions of zeta functions and l-functions, which interpolate (h, q)-extensions of Euler numbers at negative integers.

Description

Source:

Keywords:

Keywords

P-adic Volkenborn integral, Twisted q-Euler numbers and polynomials, Zeta and l-functions, Function evaluation, Interpolation, Polynomial approximation, Dirichlet, Euler numbers, Generating functions, Interpolation functions, Mellin transformation, Negative integers, New approaches, Zeta functions, Polynomials

Citation

Özden, H. ve Şimşek, Y. (2008). ''A new extension of q-Euler numbers and polynomials related to their interpolation functions''. Applied Mathematics Letters, 21(9), 934-939.

Endorsement

Review

Supplemented By

Referenced By

1

Views

13

Downloads