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Abstract

In this work, by using a p-adic q-Volkenborn integral, we construct a new approach to generating functions of the (h, q)-Euler
numbers and polynomials attached to a Dirichlet character χ . By applying the Mellin transformation and a derivative operator to
these functions, we define (h, q)-extensions of zeta functions and l-functions, which interpolate (h, q)-extensions of Euler numbers
at negative integers.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction, definitions and notation

Let p be a fixed odd prime number. Throughout this work, Zp, Qp, C and Cp respectively denote the ring of p-
adic rational integers, the field of p-adic rational numbers, the complex numbers field and the completion of algebraic
closure of Qp. Let vp be the normalized exponential valuation of Cp with |p|p = p−vp(p) =

1
p . When one talks of

q-extension, q is considered in many ways, e.g. as an indeterminate, a complex number q ∈ C, or a p-adic number

q ∈ Cp. If q ∈ C we assume that |q| < 1. If q ∈ Cp, we assume that |1− q|p < p−
1

p−1 , so that qx
= exp(x log q)

for |x |q 6 1; cf. [3,2,5–7,4,11,14,16,1]. We use the following notation:

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1+ q
,

where limq→1 [x]q = x ; cf. [5].
Let U D

(
Zp

)
be the set of uniformly differentiable functions on Zp. For f ∈ U D

(
Zp

)
, Kim [3] originally defined

the p-adic invariant q-integral on Zp as follows:

Iq( f ) =

∫
Zp

f (x)dµq(x) = lim
N→∞

1[
pN

]
q

pN
−1∑

x=0

f (x)qx ,
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where N is a natural number and p is an odd prime number. The q-deformed p-adic invariant integral on Zp, in the
fermionic sense, is defined by

I−q( f ) = lim
q→−q

Iq( f ) =

∫
Zp

f (x)dµ−q(x), cf. [3,5,6,4].

Recently, twisted (h, q)-Bernoulli and Euler numbers and polynomials were studied by several authors (see [10,2,15,
16,9,8,13,1]).

By definition of µ−q(x), we see that

I−1( f1)+ I−1( f ) = 2 f (0), cf. [5], (1.1)

where f1(x) = f (x + 1).
In this study, we define new (h, q)-extension of Euler numbers and polynomials. By using a derivative operator on

these functions, we derive (h, q)-extensions of zeta functions and l-functions, which interpolate (h, q)-extensions of
Euler numbers at negative integers.

2. A new approach to q-Euler numbers

In this section, we define (h, q)-extension of Euler numbers and polynomials. Substituting f (x) = qhx et x , with
h ∈ Z, into (1.1) we have

Fh
q (t) = I−1(q

hx et x ) =
2

qhet + 1
=

∞∑
n=0

E (h)
n,q

tn

n!
, |h log q + t | < π, (2.1)

where E (h)
n,q is called the (h, q)-extension of Euler numbers. limq→1 E (h)

n,q = En , where En is the classical Euler
numbers. That is

2
et + 1

=

∞∑
n=0

En
tn

n!
cf. [8,4,12,17].

(h, q)-extensions of Euler polynomials, E (h)
n,q(x), are defined by the following generating function:

Fh
q (t, x) = Fh

q (t)et x
=

2et x

qhet + 1
=

∞∑
n=0

E (h)
n,q(x)

tn

n!
. (2.2)

By using the Maclaurin series of et x in (2.1), we have∫
Zp

∞∑
n=0

qhx tn xn

n!
dµ−1(x) =

∞∑
n=0

E (h)
n,q

tn

n!
.

By comparing coefficients of tn

n! on either side of the above equation, we obtain the Witt formula, which is given by
the following theorem.

Theorem 1 (Witt Formula). For h ∈ Z, q ∈ Cp with |1− q|p < 1,∫
Zp

qhx xndµ−1(x) = E (h)
n,q , (2.3)

and ∫
Zp

qhy(x + y)ndµ−1(y) = E (h)
n,q(x).
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From (2.2), we have

∞∑
n=0

E (h)
n,q

tn

n!

∞∑
n=0

xn tn

n!
=

∞∑
n=0

E (h)
n,q(x)

tn

n!
.

By the Cauchy product, we see that

∞∑
n=0

n∑
k=0

E (h)
k,q

tk

k!
xn−k tn−k

(n − k)!
=

∞∑
n=0

E (h)
n,q(x)

tn

n!
.

By comparing coefficients of tn

n! , we arrive at the following theorem:

Theorem 2. Let n ∈ Z+ = Z ∪ {0}. Then we have

E (h)
n,q(x) =

n∑
k=0

(
n
k

)
xn−k E (h)

k,q . (2.4)

Let d be a fixed integer. For any positive integer N , we set

X = Xd = lim
←−

N

(
Z/dpN Z

)
, X1 = Zp, X∗ =

⋃
0<a<dp
(a,p)=1

(
a + dpN Zp

)
,

a + dpN Zp =

{
x ∈ X : x ≡ a

(
mod dpN

)}
,

where a ∈ Z with 0 6 a < dpN (cf. [3]). It is known that∫
Zp

f (x)dµ−1(x) =

∫
X

f (x)dµ−1(x), cf. [3].

From this we note that∫
X
(x + t)kqht dµ−1(t) = dk

d−1∑
a=0

(−1)aqha
∫
Zp

(
t +

a + x

d

)k (
qd

)ht
dµ−1(t), (2.5)

where d is an odd positive integer. From (2.2) and (2.5), we obtain the following theorem.

Theorem 3 (Distribution Relation). For d an odd positive integer, k ∈ Z+, we have

E (h)
k,q(x) = dk

d−1∑
a=0

(−1)aqha E (h)

k,qd

(
x + a

d

)
.

By (1.1), Kim [5] defined the following integral equation:

I−1( fn)+ (−1)n−1 I−1( f ) = 2
n−1∑
l=0

(−1)n−1−l f (l), (2.6)

where n ∈ N, fn(x) = f (x + n).
Let d be an odd positive integer and χ be the Dirichlet character with conductor d; substituting f (x) = qhxχ(x)et x ,

for h ∈ Z, into (2.6), we obtain

Fh
q (t, χ) =

2
d−1∑
a=0

(−1)aχ(a)etaqha

qhdetd + 1
=

∞∑
n=0

E (h)
n,χ,q

tn

n!
, |t + h log q| <

π

d
, (2.7)

where E (h)
n,χ,q denote (h, q)-extensions of generalized Euler numbers.
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From (2.7), we see that∫
X

χ(x)qhx xndµ−1(x) = dn
d−1∑
a=0

χ(a)qha(−1)a
∫
Zp

(
qd

)hx (a

d
+ x

)n
dµ−1(x). (2.8)

By Theorem 1 and (2.8), we obtain the following theorem.

Theorem 4. Let d be an odd positive integer and χ be Dirichlet’s character with conductor d. Then we have

E (h)
n,χ,q = dn

d−1∑
a=0

χ(a)qha(−1)a E (h)

n,qd

(a

d

)
.

From (2.6), we also note that

Fh
q (t, x, χ) =

2
d−1∑
a=0

(−1)aχ(a)et (a+x)qha

qhdetd + 1
=

∞∑
n=0

E (h)
n,χ,q(x)

tn

n!
, (2.9)

where h ∈ Z, E (h)
n,χ,q(x) are called generalized (h, q)-extensions of Euler polynomials attached to χ and Fh

q (t, x, χ) =

Fh
q (t, χ)et x .

By (2.9), we easily see that∫
X
(x + y)nχ(y)qhydµ−1(y) = E (h)

n,χ,q(x). (2.10)

By using (2.10), we arrive at the following theorem.

Theorem 5. Let d be an odd integer. Then we have

E (h)
n,χ,q(x) = dn

d−1∑
a=0

(−1)aχ(a)qha E (h)

n,qd

(
a + x

d

)
.

3. A new approach to the (h, q)-Euler zeta function

In this section, we assume that q ∈ C with |q| < 1. By using a geometric series in (2.2), we obtain

2ext
∞∑

n=0

qhnetn(−1)n
=

∞∑
n=0

E (h)
n,q(x)

tn

n!
.

By applying the derivative operator dk

dtk |t=0 to the above equation, we have

E (h)
k,q(x) = 2

∞∑
n=0

(−1)nqhn(x + n)k . (3.1)

By (3.1), we define new extensions of Hurwitz type (h, q)-Euler zeta functions as follows:

Definition 1. For h ∈ Z, s ∈ C and 0 < x ≤ 1, we define

ζ
(h)
E,q(s, x) = 2

∞∑
n=0

(−1)nqhn

(n + x)s . (3.2)

ζ
(h)
E,q(s, x) is an analytic function on the whole complex s-plane. If x = 1, then we define the (h, q)-Euler zeta

function as follows:
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ζ
(h)
E,q(s) = 2

∞∑
n=1

(−1)nqhn

ns .

For s = −k, k ∈ Z+ in (3.2) and using (3.1), we arrive at the following theorem.

Theorem 6. For k ∈ Z+, we have

ζ
(h)
E,q(−k, x) = E (h)

k,q(x). (3.3)

Remark 1. By applying the Mellin transformation to the generating function of (h, q)-Euler polynomials, for s ∈ C,

1
Γ (s)

∫
∞

0
Fh

q (−t, x)t s−1dt = ζ
(h)
E,q(s, x).

By substituting s = −n, n ∈ Z+ and using the Cauchy residue theorem, we obtain another proof of Theorem 6.

By using (2.7) we have with χ(a + d) = χ(a), where d is an odd positive integer,

2
∞∑

m=0

(−1)mχ(m)etmqhm
=

∞∑
n=0

E (h)
n,χ,q

tn

n!
. (3.4)

By applying the derivative operator dk

dtk |t=0 to the above equation, we have

E (h)
k,χ,q = 2

∞∑
m=0

(−1)mqhmχ(m)mk . (3.5)

By using (3.5), we define new extensions of (h, q)-Euler l-functions as follows:

Definition 2. Let s ∈ C. We define

l(h)
E,q(s, χ) = 2

∞∑
m=1

(−1)mqhmχ(m)

ms . (3.6)

l(h)
E,q(s, x) is an analytic function on the whole complex s-plane. From (3.5) and (3.6), we arrive at the following

theorem.

Theorem 7. For k ∈ Z+, we have

l(h)
E,q(−k, χ) = E (h)

k,χ,q . (3.7)

Remark 2.
1

Γ (s)

∫
∞

0
Fh

q,χ (−t)t s−1dt = l(h)
E,q(s, χ).

By using the Cauchy residue theorem we obtain another proof of Theorem 7.

By substituting m = a + dn, a = 1, . . . , d , d is odd, n = 0, 1, 2, . . ., into (3.6), we have

l(h)
E,q(s, χ) = 2

d∑
a=1

∞∑
m=0

(−1)a+dmqdhm+haχ(dm + a)

(a + dm)s

= d−s
d∑

a=1

(−1)aχ(a)qha
∞∑

m=0

2(−1)mqdhm(
m + a

d

)s

= d−s
d∑

a=1

(−1)aχ(a)qhaζ
(h)

E,qd

(
s,

a

d

)
.
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By substituting s = −n, n ∈ Z+, into the above equation, we have

l(h)
E,q(−n, χ) = dn

d∑
a=1

(−1)aχ(a)qhaζ
(h)

E,qd

(
−n,

a

d

)

= dn
d∑

a=1

(−1)aχ(a)qha E (h)

n,qd

(a

d

)
. (3.8)

By using (2.4), (3.7) and (3.8), we obtained the following theorem.

Theorem 8 (Distribution Relations for the Generalized (h, q)-Extension of Euler Numbers). Let d be an odd integer.
Then we have

E (h)
n,χ,q =

d∑
a=1

n∑
k=0

(
n
k

)
(−1)aχ(a)qhaan−kdk E (h)

k,qd .
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