A new extension of q-Euler numbers and polynomials related to their interpolation functions

Hacer Ozden ${ }^{\text {a,* }}$, Yilmaz Simsek ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Uludag, Faculty of Arts and Science, Department of Mathematics, Bursa, Turkey
${ }^{\mathrm{b}}$ University of Akdeniz, Faculty of Arts and Science, Department of Mathematics, Antalya, Turkey

Received 9 March 2007; received in revised form 30 July 2007; accepted 18 October 2007

Abstract

In this work, by using a p-adic q-Volkenborn integral, we construct a new approach to generating functions of the (h, q)-Euler numbers and polynomials attached to a Dirichlet character χ. By applying the Mellin transformation and a derivative operator to these functions, we define (h, q)-extensions of zeta functions and l-functions, which interpolate (h, q)-extensions of Euler numbers at negative integers.

© 2007 Elsevier Ltd. All rights reserved.
Keywords: p-adic Volkenborn integral; Twisted q-Euler numbers and polynomials; Zeta and l-functions

1. Introduction, definitions and notation

Let p be a fixed odd prime number. Throughout this work, $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and \mathbb{C}_{p} respectively denote the ring of p adic rational integers, the field of p-adic rational numbers, the complex numbers field and the completion of algebraic closure of \mathbb{Q}_{p}. Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=\frac{1}{p}$. When one talks of q-extension, q is considered in many ways, e.g. as an indeterminate, a complex number $q \in \mathbb{C}^{p}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ we assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we assume that $|1-q|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{q} \leqslant 1$; cf. [3,2,5-7,4,11,14,16,1]. We use the following notation:

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad[x]_{-q}=\frac{1-(-q)^{x}}{1+q}
$$

where $\lim _{q \rightarrow 1}[x]_{q}=x$; cf. [5].
Let $U D\left(\mathbb{Z}_{p}\right)$ be the set of uniformly differentiable functions on \mathbb{Z}_{p}. For $f \in U D\left(\mathbb{Z}_{p}\right)$, Kim [3] originally defined the p-adic invariant q-integral on \mathbb{Z}_{p} as follows:

$$
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x}
$$

[^0]where N is a natural number and p is an odd prime number. The q-deformed p-adic invariant integral on \mathbb{Z}_{p}, in the fermionic sense, is defined by
$$
I_{-q}(f)=\lim _{q \rightarrow-q} I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{-q}(x), \quad \text { cf. [3,5,6,4]. }
$$

Recently, twisted (h, q)-Bernoulli and Euler numbers and polynomials were studied by several authors (see $[10,2,15$, 16,9,8,13,1]).

By definition of $\mu_{-q}(x)$, we see that

$$
\begin{equation*}
I_{-1}\left(f_{1}\right)+I_{-1}(f)=2 f(0), \quad \text { cf. }[5] \tag{1.1}
\end{equation*}
$$

where $f_{1}(x)=f(x+1)$.
In this study, we define new (h, q)-extension of Euler numbers and polynomials. By using a derivative operator on these functions, we derive (h, q)-extensions of zeta functions and l-functions, which interpolate (h, q)-extensions of Euler numbers at negative integers.

2. A new approach to q-Euler numbers

In this section, we define (h, q)-extension of Euler numbers and polynomials. Substituting $f(x)=q^{h x} \mathrm{e}^{t x}$, with $h \in \mathbb{Z}$, into (1.1) we have

$$
\begin{equation*}
F_{q}^{h}(t)=I_{-1}\left(q^{h x} \mathrm{e}^{t x}\right)=\frac{2}{q^{h} \mathrm{e}^{t}+1}=\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!}, \quad|h \log q+t|<\pi, \tag{2.1}
\end{equation*}
$$

where $E_{n, q}^{(h)}$ is called the (h, q)-extension of Euler numbers. $\lim _{q \rightarrow 1} E_{n, q}^{(h)}=E_{n}$, where E_{n} is the classical Euler numbers. That is

$$
\frac{2}{\mathrm{e}^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \quad \text { cf. }[8,4,12,17]
$$

(h, q)-extensions of Euler polynomials, $E_{n, q}^{(h)}(x)$, are defined by the following generating function:

$$
\begin{equation*}
F_{q}^{h}(t, x)=F_{q}^{h}(t) \mathrm{e}^{t x}=\frac{2 \mathrm{e}^{t x}}{q^{h} \mathrm{e}^{t}+1}=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} . \tag{2.2}
\end{equation*}
$$

By using the Maclaurin series of $\mathrm{e}^{t x}$ in (2.1), we have

$$
\int_{\mathbb{Z}_{p}} \sum_{n=0}^{\infty} q^{h x} \frac{t^{n} x^{n}}{n!} \mathrm{d} \mu_{-1}(x)=\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!}
$$

By comparing coefficients of $\frac{t^{n}}{n!}$ on either side of the above equation, we obtain the Witt formula, which is given by the following theorem.

Theorem 1 (Witt Formula). For $h \in \mathbb{Z}, q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$,

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} q^{h x} x^{n} \mathrm{~d} \mu_{-1}(x)=E_{n, q}^{(h)}, \tag{2.3}
\end{equation*}
$$

and

$$
\int_{\mathbb{Z}_{p}} q^{h y}(x+y)^{n} \mathrm{~d} \mu_{-1}(y)=E_{n, q}^{(h)}(x) .
$$

From (2.2), we have

$$
\sum_{n=0}^{\infty} E_{n, q}^{(h)} \frac{t^{n}}{n!} \sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} .
$$

By the Cauchy product, we see that

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} E_{k, q}^{(h)} \frac{t^{k}}{k!} x^{n-k} \frac{t^{n-k}}{(n-k)!}=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} .
$$

By comparing coefficients of $\frac{t^{n}}{n!}$, we arrive at the following theorem:
Theorem 2. Let $n \in \mathbb{Z}_{+}=\mathbb{Z} \cup\{0\}$. Then we have

$$
\begin{equation*}
E_{n, q}^{(h)}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} E_{k, q}^{(h)} . \tag{2.4}
\end{equation*}
$$

Let d be a fixed integer. For any positive integer N, we set

$$
\begin{aligned}
& \mathbb{X}=\mathbb{X}_{d}=\underset{N}{\lim _{N}}\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right), \quad \mathbb{X}_{1}=\mathbb{Z}_{p}, \quad \mathbb{X}^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}}\left(a+d p^{N} \mathbb{Z}_{p}\right), \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in \mathbb{X}: x \equiv a\left(\bmod d p^{N}\right)\right\},
\end{aligned}
$$

where $a \in \mathbb{Z}$ with $0 \leqslant a<d p^{N}$ (cf. [3]). It is known that

$$
\int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{-1}(x)=\int_{\mathbb{X}} f(x) \mathrm{d} \mu_{-1}(x), \quad \text { cf. [3]. }
$$

From this we note that

$$
\begin{equation*}
\int_{\mathbb{X}}(x+t)^{k} q^{h t} \mathrm{~d} \mu_{-1}(t)=d^{k} \sum_{a=0}^{d-1}(-1)^{a} q^{h a} \int_{\mathbb{Z}_{p}}\left(t+\frac{a+x}{d}\right)^{k}\left(q^{d}\right)^{h t} \mathrm{~d} \mu_{-1}(t) \tag{2.5}
\end{equation*}
$$

where d is an odd positive integer. From (2.2) and (2.5), we obtain the following theorem.
Theorem 3 (Distribution Relation). For d an odd positive integer, $k \in \mathbb{Z}_{+}$, we have

$$
E_{k, q}^{(h)}(x)=d^{k} \sum_{a=0}^{d-1}(-1)^{a} q^{h a} E_{k, q^{d}}^{(h)}\left(\frac{x+a}{d}\right) .
$$

By (1.1), Kim [5] defined the following integral equation:

$$
\begin{equation*}
I_{-1}\left(f_{n}\right)+(-1)^{n-1} I_{-1}(f)=2 \sum_{l=0}^{n-1}(-1)^{n-1-l} f(l) \tag{2.6}
\end{equation*}
$$

where $n \in \mathbb{N}, f_{n}(x)=f(x+n)$.
Let d be an odd positive integer and χ be the Dirichlet character with conductor d; substituting $f(x)=q^{h x} \chi(x) \mathrm{e}^{t x}$, for $h \in \mathbb{Z}$, into (2.6), we obtain

$$
\begin{equation*}
F_{q}^{h}(t, \chi)=\frac{2 \sum_{a=0}^{d-1}(-1)^{a} \chi(a) \mathrm{e}^{t a} q^{h a}}{q^{h d} \mathrm{e}^{t d}+1}=\sum_{n=0}^{\infty} E_{n, \chi, q}^{(h)} \frac{t^{n}}{n!}, \quad|t+h \log q|<\frac{\pi}{d}, \tag{2.7}
\end{equation*}
$$

where $E_{n, \chi, q}^{(h)}$ denote (h, q)-extensions of generalized Euler numbers.

From (2.7), we see that

$$
\begin{equation*}
\int_{\mathbb{X}} \chi(x) q^{h x} x^{n} \mathrm{~d} \mu_{-1}(x)=d^{n} \sum_{a=0}^{d-1} \chi(a) q^{h a}(-1)^{a} \int_{\mathbb{Z}_{p}}\left(q^{d}\right)^{h x}\left(\frac{a}{d}+x\right)^{n} \mathrm{~d} \mu_{-1}(x) . \tag{2.8}
\end{equation*}
$$

By Theorem 1 and (2.8), we obtain the following theorem.
Theorem 4. Let d be an odd positive integer and χ be Dirichlet's character with conductor d. Then we have

$$
E_{n, \chi, q}^{(h)}=d^{n} \sum_{a=0}^{d-1} \chi(a) q^{h a}(-1)^{a} E_{n, q^{d}}^{(h)}\left(\frac{a}{d}\right)
$$

From (2.6), we also note that

$$
\begin{equation*}
F_{q}^{h}(t, x, \chi)=\frac{2 \sum_{a=0}^{d-1}(-1)^{a} \chi(a) \mathrm{e}^{t(a+x)} q^{h a}}{q^{h d} \mathrm{e}^{\mathrm{t} d}+1}=\sum_{n=0}^{\infty} E_{n, \chi, q}^{(h)}(x) \frac{t^{n}}{n!}, \tag{2.9}
\end{equation*}
$$

where $h \in \mathbb{Z}, E_{n, \chi, q}^{(h)}(x)$ are called generalized (h, q)-extensions of Euler polynomials attached to χ and $F_{q}^{h}(t, x, \chi)=$ $F_{q}^{h}(t, \chi) \mathrm{e}^{t x}$.

By (2.9), we easily see that

$$
\begin{equation*}
\int_{\mathbb{X}}(x+y)^{n} \chi(y) q^{h y} \mathrm{~d} \mu_{-1}(y)=E_{n, \chi, q}^{(h)}(x) . \tag{2.10}
\end{equation*}
$$

By using (2.10), we arrive at the following theorem.
Theorem 5. Let d be an odd integer. Then we have

$$
E_{n, \chi, q}^{(h)}(x)=d^{n} \sum_{a=0}^{d-1}(-1)^{a} \chi(a) q^{h a} E_{n, q^{d}}^{(h)}\left(\frac{a+x}{d}\right) .
$$

3. A new approach to the (h, q)-Euler zeta function

In this section, we assume that $q \in \mathbb{C}$ with $|q|<1$. By using a geometric series in (2.2), we obtain

$$
2 \mathrm{e}^{x t} \sum_{n=0}^{\infty} q^{h n} \mathrm{e}^{t n}(-1)^{n}=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!} .
$$

By applying the derivative operator $\left.\frac{\mathrm{d}^{k} \mathrm{t}^{k}}{}\right|_{t=0}$ to the above equation, we have

$$
\begin{equation*}
E_{k, q}^{(h)}(x)=2 \sum_{n=0}^{\infty}(-1)^{n} q^{h n}(x+n)^{k} . \tag{3.1}
\end{equation*}
$$

By (3.1), we define new extensions of Hurwitz type (h, q)-Euler zeta functions as follows:
Definition 1. For $h \in \mathbb{Z}, s \in \mathbb{C}$ and $0<x \leq 1$, we define

$$
\begin{equation*}
\zeta_{E, q}^{(h)}(s, x)=2 \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{h n}}{(n+x)^{s}} . \tag{3.2}
\end{equation*}
$$

$\zeta_{E, q}^{(h)}(s, x)$ is an analytic function on the whole complex s-plane. If $x=1$, then we define the (h, q)-Euler zeta function as follows:

$$
\zeta_{E, q}^{(h)}(s)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{h n}}{n^{s}} .
$$

For $s=-k, k \in \mathbb{Z}_{+}$in (3.2) and using (3.1), we arrive at the following theorem.
Theorem 6. For $k \in \mathbb{Z}_{+}$, we have

$$
\begin{equation*}
\zeta_{E, q}^{(h)}(-k, x)=E_{k, q}^{(h)}(x) . \tag{3.3}
\end{equation*}
$$

Remark 1. By applying the Mellin transformation to the generating function of (h, q)-Euler polynomials, for $s \in \mathbb{C}$,

$$
\frac{1}{\Gamma(s)} \int_{0}^{\infty} F_{q}^{h}(-t, x) t^{s-1} \mathrm{~d} t=\zeta_{E, q}^{(h)}(s, x)
$$

By substituting $s=-n, n \in \mathbb{Z}_{+}$and using the Cauchy residue theorem, we obtain another proof of Theorem 6.
By using (2.7) we have with $\chi(a+d)=\chi(a)$, where d is an odd positive integer,

$$
\begin{equation*}
2 \sum_{m=0}^{\infty}(-1)^{m} \chi(m) \mathrm{e}^{t m} q^{h m}=\sum_{n=0}^{\infty} E_{n, \chi, q}^{(h)} \frac{t^{n}}{n!} . \tag{3.4}
\end{equation*}
$$

By applying the derivative operator $\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}}\right|_{t=0}$ to the above equation, we have

$$
\begin{equation*}
E_{k, \chi, q}^{(h)}=2 \sum_{m=0}^{\infty}(-1)^{m} q^{h m} \chi(m) m^{k} . \tag{3.5}
\end{equation*}
$$

By using (3.5), we define new extensions of (h, q)-Euler l-functions as follows:
Definition 2. Let $s \in \mathbb{C}$. We define

$$
\begin{equation*}
l_{E, q}^{(h)}(s, \chi)=2 \sum_{m=1}^{\infty} \frac{(-1)^{m} q^{h m} \chi(m)}{m^{s}} \tag{3.6}
\end{equation*}
$$

$l_{E, q}^{(h)}(s, x)$ is an analytic function on the whole complex s-plane. From (3.5) and (3.6), we arrive at the following theorem.

Theorem 7. For $k \in \mathbb{Z}_{+}$, we have

$$
\begin{equation*}
l_{E, q}^{(h)}(-k, \chi)=E_{k, \chi, q}^{(h)} \tag{3.7}
\end{equation*}
$$

Remark 2.

$$
\frac{1}{\Gamma(s)} \int_{0}^{\infty} F_{q, \chi}^{h}(-t) t^{s-1} \mathrm{~d} t=l_{E, q}^{(h)}(s, \chi) .
$$

By using the Cauchy residue theorem we obtain another proof of Theorem 7.
By substituting $m=a+d n, a=1, \ldots, d, d$ is odd, $n=0,1,2, \ldots$, into (3.6), we have

$$
\begin{aligned}
l_{E, q}^{(h)}(s, \chi) & =2 \sum_{a=1}^{d} \sum_{m=0}^{\infty} \frac{(-1)^{a+d m} q^{d h m+h a} \chi(d m+a)}{(a+d m)^{s}} \\
& =d^{-s} \sum_{a=1}^{d}(-1)^{a} \chi(a) q^{h a} \sum_{m=0}^{\infty} \frac{2(-1)^{m} q^{d h m}}{\left(m+\frac{a}{d}\right)^{s}} \\
& =d^{-s} \sum_{a=1}^{d}(-1)^{a} \chi(a) q^{h a} \zeta_{E, q^{d}}^{(h)}\left(s, \frac{a}{d}\right) .
\end{aligned}
$$

By substituting $s=-n, n \in \mathbb{Z}_{+}$, into the above equation, we have

$$
\begin{align*}
l_{E, q}^{(h)}(-n, \chi) & =d^{n} \sum_{a=1}^{d}(-1)^{a} \chi(a) q^{h a} \zeta_{E, q^{d}}^{(h)}\left(-n, \frac{a}{d}\right) \\
& =d^{n} \sum_{a=1}^{d}(-1)^{a} \chi(a) q^{h a} E_{n, q^{d}}^{(h)}\left(\frac{a}{d}\right) . \tag{3.8}
\end{align*}
$$

By using (2.4), (3.7) and (3.8), we obtained the following theorem.
Theorem 8 (Distribution Relations for the Generalized (h, q)-Extension of Euler Numbers). Let d be an odd integer. Then we have

$$
E_{n, \chi, q}^{(h)}=\sum_{a=1}^{d} \sum_{k=0}^{n}\binom{n}{k}(-1)^{a} \chi(a) q^{h a} a^{n-k} d^{k} E_{k, q^{d}}^{(h)} .
$$

Acknowledgement

The second author is supported by the research fund of Akdeniz University.

References

[1] M. Cenkci, M. Can, V. Kurt, p-adic interpolation functions and Kummer-type congruences for q-twisted and q-generalized twisted Euler numbers, Adv. Stud. Contemp. Math. 9 (2) (2004) 203-216.
[2] L.C. Jang, S.-D. Kim, D.-W. Park, Y.S. Ro, A note on Euler number and polynomials, J. Inequal. Appl. (2006) 5 pp. Art. ID 34602.
[3] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002) 288-299.
[4] T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (3) (2003) 261-267.
[5] T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Z_{p} at $q=-1$, J. Math. Anal. Appl. 331 (2007) 779-792.
[6] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.
[7] T. Kim, A new approach to q-zeta function, J. Comput. Anal. Appl. 9 (2007) 395-400.
[8] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (1) (2007) 15-27.
[9] T. Kim, The modified q-Euler numbers and polynomials. arxivmath.NT/0702523.
[10] T. Kim, A note on p-adic invariant integral in the rings of p-adic integers, Adv. Stud. Contemp. Math. 13 (1) (2006) 95-99.
[11] T. Kim, An invariant p-adic q-integral on \mathbb{Z}_{p}, Appl. Math. Lett., in press (doi:10.1016/j.aml.2006.11.011).
[12] H. Ozden, Y. Simsek, S.-H. Rim, I.N. Cangul, A note on p-adic q-Euler Measure, Adv. Stud. Contemp. Math. 14 (2) (2007) $233-239$.
[13] S-H. Rim, T. Kim, A note on q-Euler numbers associated with the basic q-zeta function, Appl. Math. Lett. 20 (4) (2007) 366-369.
[14] M. Schork, Ward's "calculus of sequences", q-calculus and the limit q to -1, Adv. Stud. Contemp. Math. 13 (2) (2006) 131-141.
[15] Y. Simsek, q-analogue of twisted l-series and q-twisted Euler numbers, J. Number Theory 110 (2) (2005) $267-278$.
[16] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006) 790-804.
[17] H.M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2) (2005) 241-268.

[^0]: * Corresponding author.

 E-mail addresses: hozden@uludag.edu.tr (H. Ozden), ysimsek@akdeniz.edu.tr (Y. Simsek).

