Publication:
Some properties on the lexicographic product of graphs obtained by monogenic semigroups

Thumbnail Image

Date

Organizational Units

Authors

Cangül, İsmail Naci

Authors

Das, Kinkar Chandra
Akgüneş, Nihat
Çevik, Ahmet Sinan

Advisor

Language

Publisher:

Springer

Journal Title

Journal ISSN

Volume Title

Abstract

In (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph Gamma (S-M) on monogenic semigroups S-M (with zero) having elements {0, x, x(2), x(3),..., x(n)} was recently defined. The vertices are the non-zero elements x, x(2), x(3),..., x(n) and, for 1 <= i, j <= n, any two distinct vertices x(i) and x(j) are adjacent if x(i)x(j) = 0 in S-M. As a continuing study, in an unpublished work, some well-known indices (first Zagreb index, second Zagreb index, Randic index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Gamma (S-M) were investigated by the same authors of this paper. In the light of the above references, our main aim in this paper is to extend these studies to the lexicographic product over Gamma (S-M). In detail, we investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the lexicographic product of any two (not necessarily different) graphs Gamma (S-M(1)) and Gamma (S-M(2)).

Description

Source:

Keywords:

Keywords

Mathematics, Monogenic semigroup, Lexicographic product, Clique number, Chromatic number, Independence number, Domination number, Zero-divisor graph, Radius, Number

Citation

Akgüneş, N. vd. (2013). “Some properties on the lexicographic product of graphs obtained by monogenic semigroups”. Journal of Inequalities and Applications, 2013.

Endorsement

Review

Supplemented By

Referenced By

12

Views

20

Downloads