Publication:
Some properties on the lexicographic product of graphs obtained by monogenic semigroups

dc.contributor.authorDas, Kinkar Chandra
dc.contributor.authorAkgüneş, Nihat
dc.contributor.authorÇevik, Ahmet Sinan
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.researcheridJ-3505-2017
dc.contributor.researcheridABA-6206-2020
dc.contributor.scopusid57189022403
dc.date.accessioned2023-05-12T06:36:35Z
dc.date.available2023-05-12T06:36:35Z
dc.date.issued2013
dc.description.abstractIn (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph Gamma (S-M) on monogenic semigroups S-M (with zero) having elements {0, x, x(2), x(3),..., x(n)} was recently defined. The vertices are the non-zero elements x, x(2), x(3),..., x(n) and, for 1 <= i, j <= n, any two distinct vertices x(i) and x(j) are adjacent if x(i)x(j) = 0 in S-M. As a continuing study, in an unpublished work, some well-known indices (first Zagreb index, second Zagreb index, Randic index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Gamma (S-M) were investigated by the same authors of this paper. In the light of the above references, our main aim in this paper is to extend these studies to the lexicographic product over Gamma (S-M). In detail, we investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the lexicographic product of any two (not necessarily different) graphs Gamma (S-M(1)) and Gamma (S-M(2)).
dc.description.sponsorshipSelçuk Üniversitesi
dc.description.sponsorshipSungkyunkwan University (BK21)
dc.identifier.citationAkgüneş, N. vd. (2013). “Some properties on the lexicographic product of graphs obtained by monogenic semigroups”. Journal of Inequalities and Applications, 2013.
dc.identifier.issn1029-242X
dc.identifier.scopus2-s2.0-84894585022
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-238
dc.identifier.urihttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-238
dc.identifier.urihttp://hdl.handle.net/11452/32631
dc.identifier.volume2013
dc.identifier.wos000320668600002
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalJournal of Inequalities and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.subjectMonogenic semigroup
dc.subjectLexicographic product
dc.subjectClique number
dc.subjectChromatic number
dc.subjectIndependence number
dc.subjectDomination number
dc.subjectZero-divisor graph
dc.subjectRadius
dc.subjectNumber
dc.subject.scopusGraph; Commutative Ring; Annihilator
dc.subject.wosMathematics, applied
dc.subject.wosMathematics
dc.titleSome properties on the lexicographic product of graphs obtained by monogenic semigroups
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Cangül_vd_2013.pdf
Size:
242.49 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: