Yayın:
Derin ögrenme tabanlı nesne takibi

Küçük Resim

Akademik Birimler

Kurum Yazarları

Yazarlar

Başarır, Bilen

Danışman

Dirik, Ahmet Emir

Dil

Yayıncı:

Bursa Uludağ Üniversitesi

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Bu tezde, derin ögrenme tabanlı SSD (Single Shot Multibox Detector) algoritmasını kullanarak, hareket eden kisileri takip eden ve bir lazer isaretçi ile hareket eden kisiye nisan alan bir sistemin tasarlanması ve gerçeklenmesi amaçlanmaktadır. SSD yöntemi nesne tespit konusunda literatürdeki en basarılı yöntemlerden biridir. Gelistirilen sistemin nisangahının yatay ve dikey hareketleri 2 adet adım motoru ile kontrol edilmektedir. Gelistirilen sistemim performansı ve isabetli vurus istatistikleri deneysel testlerle ölçülmüstür. Bulunan sonuçlar gerçek zamanlı olarak bilgisayar ortamında kaydedilerek akabinde sonuçlar istatistik olarak yorumlanmıstır.
In this thesis, using deep learning based SSD (Single Shot Multibox Detector) algorithm, it is aimed to design and implement a system that follows and aims the moving people a laser pointer. SSD method is one of the most successful methods of object detection in the literature. The horizontal and vertical movements of the developed system are controlled by 2 step motors. Improved system performance and accurate hit statistics were measured by experimental tests. The results were recorded in real time in a computer environment and interpreted as statistically.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Evrişimsel aglar, CNN, Deep learning, Derin ögrenme, SSD, Nesne tanıma, Adım motoru, Arduino, Object detection, Step motor

Alıntı

Başarır, B. (2019). Derin ögrenme tabanlı nesne takibi. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü.

Endorsement

Review

Supplemented By

Referenced By

51

Views

141

Downloads