Publication:
Derin ögrenme tabanlı nesne takibi

dc.contributor.advisorDirik, Ahmet Emir
dc.contributor.authorBaşarır, Bilen
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentBilgisayar Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0002-6459
dc.contributor.orcid0000-0002-6200-1717
dc.date.accessioned2020-06-18T21:03:26Z
dc.date.available2020-06-18T21:03:26Z
dc.date.issued2019-09-18
dc.description.abstractBu tezde, derin ögrenme tabanlı SSD (Single Shot Multibox Detector) algoritmasını kullanarak, hareket eden kisileri takip eden ve bir lazer isaretçi ile hareket eden kisiye nisan alan bir sistemin tasarlanması ve gerçeklenmesi amaçlanmaktadır. SSD yöntemi nesne tespit konusunda literatürdeki en basarılı yöntemlerden biridir. Gelistirilen sistemin nisangahının yatay ve dikey hareketleri 2 adet adım motoru ile kontrol edilmektedir. Gelistirilen sistemim performansı ve isabetli vurus istatistikleri deneysel testlerle ölçülmüstür. Bulunan sonuçlar gerçek zamanlı olarak bilgisayar ortamında kaydedilerek akabinde sonuçlar istatistik olarak yorumlanmıstır.
dc.description.abstractIn this thesis, using deep learning based SSD (Single Shot Multibox Detector) algorithm, it is aimed to design and implement a system that follows and aims the moving people a laser pointer. SSD method is one of the most successful methods of object detection in the literature. The horizontal and vertical movements of the developed system are controlled by 2 step motors. Improved system performance and accurate hit statistics were measured by experimental tests. The results were recorded in real time in a computer environment and interpreted as statistically.
dc.format.extentVIII, 76 sayfa
dc.identifier.citationBaşarır, B. (2019). Derin ögrenme tabanlı nesne takibi. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/11298
dc.language.isotr
dc.publisherBursa Uludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEvrişimsel aglar
dc.subjectCNN
dc.subjectDeep learning
dc.subjectDerin ögrenme
dc.subjectSSD
dc.subjectNesne tanıma
dc.subjectAdım motoru
dc.subjectArduino
dc.subjectObject detection
dc.subjectStep motor
dc.titleDerin ögrenme tabanlı nesne takibi
dc.title.alternativeDeep learning based object detection
dc.typemasterThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Bilgisayar Mühendisliği Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
595879.pdf
Size:
35.53 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: