Yayın:
The number of spanning trees of a graph

dc.contributor.authorDas, Kinkar Chandra
dc.contributor.authorÇevik, Ahmet Sinan
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.orcid0000-0003-2576-160X
dc.contributor.researcheridJ-3505-2017
dc.contributor.scopusid57189022403
dc.date.accessioned2023-05-29T08:45:29Z
dc.date.available2023-05-29T08:45:29Z
dc.date.issued2013-08
dc.description.abstractLet G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees.
dc.description.sponsorshipFaculty research Fund, Sungkyunkwan University
dc.description.sponsorshipKorean Government (2013R1A1A2009341)
dc.description.sponsorshipSelçuk Üniversitesi
dc.description.sponsorshipGlaucoma Research Foundation
dc.description.sponsorshipHong Kong Baptist University
dc.identifier.citationDas, K. C. vd. (2013). “The number of spanning trees of a graph”. Journal of Inequalities and Applications, 2013.
dc.identifier.doi10.1186/1029-242X-2013-395
dc.identifier.issn1029-242X
dc.identifier.scopus2-s2.0-84894413510
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-395
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-395
dc.identifier.urihttp://hdl.handle.net/11452/32849
dc.identifier.volume2013
dc.identifier.wos000336908800001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.bapUludağ Üniversitesi
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalJournal of Inequalities and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitakTUBİTAK
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.subjectGraph
dc.subjectSpanning trees
dc.subjectIndependence number
dc.subjectClique number
dc.subjectFirst Zagreb index
dc.subjectMolecular-orbitals
dc.subjectZagreb indexes
dc.subject.scopusSignless Laplacian; Eigenvalue; Signed Graph
dc.subject.wosMathematics, applied
dc.subject.wosMathematics
dc.titleThe number of spanning trees of a graph
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Cangül_vd_2013.pdf
Boyut:
325.18 KB
Format:
Adobe Portable Document Format
Açıklama

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama