Yayın:
The number of spanning trees of a graph

Küçük Resim

Tarih

Akademik Birimler

Kurum Yazarları

Cangül, İsmail Naci

Yazarlar

Das, Kinkar Chandra
Çevik, Ahmet Sinan

Danışman

Dil

Türü

Yayıncı:

Springer

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Mathematics, Graph, Spanning trees, Independence number, Clique number, First Zagreb index, Molecular-orbitals, Zagreb indexes

Alıntı

Das, K. C. vd. (2013). “The number of spanning trees of a graph”. Journal of Inequalities and Applications, 2013.

Endorsement

Review

Supplemented By

Referenced By

2

Views

15

Downloads

View PlumX Details