Yayın:
Artificial neural network-assisted supercell thunderstorm algorithm for optimization of real-world engineering problems

dc.contributor.authorSait, Sadiq M.
dc.contributor.authorMehta, Pranav
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorGÜRSES, DİLDAR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridB-3604-2008
dc.contributor.researcheridJCN-8328-2023
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2025-10-21T09:22:51Z
dc.date.issued2025-08-13
dc.description.abstractThis study presents an artificial neural network (ANN)-assisted modified supercell thunderstorm optimizer (MSTO) for solving complex industrial component optimization problems. Inspired by the natural phenomena of spiral motion, tornado formation, and jet streams within supercell thunderstorms, the STO algorithm is enhanced with ANN integration to improve exploration, exploitation, and convergence rates. The algorithm is validated across five constrained engineering problems: cantilever beam optimization, industrial grinding cost optimization, tubular column design, diaphragm spring weight minimization, and fin and tube heat exchanger (FTHE) cost optimization. These results confirm MSTO's superior performance over recent metaheuristics, highlighting its potential for high-precision, stable, and efficient solutions across structural, thermal, and mechanical design domains.
dc.identifier.doi10.1515/mt-2025-0182
dc.identifier.endpage1536
dc.identifier.issn0025-5300
dc.identifier.issue9
dc.identifier.scopus2-s2.0-105013310350
dc.identifier.startpage1528
dc.identifier.urihttps://doi.org/10.1515/mt-2025-0182
dc.identifier.urihttps://hdl.handle.net/11452/55991
dc.identifier.volume67
dc.identifier.wos001547463600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de gruyter gmbh
dc.relation.journalMaterials testing
dc.subjectMarine predators algorithm
dc.subjectSalp swarm algorithm
dc.subjectDesign optimization
dc.subjectDifferential evolution
dc.subjectStructural design
dc.subjectTopology design
dc.subjectRobust design
dc.subjectDesign optimization
dc.subjectIndustrial components
dc.subjectAutomobile components
dc.subjectSpring design
dc.subjectArtificial neural networks
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science
dc.titleArtificial neural network-assisted supercell thunderstorm algorithm for optimization of real-world engineering problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication1af1d254-5397-464d-b47b-7ddcbaff8643
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Yildiz_vd_2025.pdf
Boyut:
1.15 MB
Format:
Adobe Portable Document Format