Yayın: Artificial neural network-assisted supercell thunderstorm algorithm for optimization of real-world engineering problems
Dosyalar
Tarih
Kurum Yazarları
Yazarlar
Sait, Sadiq M.
Mehta, Pranav
Danışman
Dil
Türü
Yayıncı:
Walter de gruyter gmbh
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
This study presents an artificial neural network (ANN)-assisted modified supercell thunderstorm optimizer (MSTO) for solving complex industrial component optimization problems. Inspired by the natural phenomena of spiral motion, tornado formation, and jet streams within supercell thunderstorms, the STO algorithm is enhanced with ANN integration to improve exploration, exploitation, and convergence rates. The algorithm is validated across five constrained engineering problems: cantilever beam optimization, industrial grinding cost optimization, tubular column design, diaphragm spring weight minimization, and fin and tube heat exchanger (FTHE) cost optimization. These results confirm MSTO's superior performance over recent metaheuristics, highlighting its potential for high-precision, stable, and efficient solutions across structural, thermal, and mechanical design domains.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Marine predators algorithm
, Salp swarm algorithm
, Design optimization
, Differential evolution
, Structural design
, Topology design
, Robust design, Design optimization, Industrial components, Automobile components, Spring design, Artificial neural networks, Science & Technology, Technology, Materials Science, Characterization & Testing, Materials Science
