Yayın: Baer and extending conditions on modules and bimodules
| dc.contributor.author | Kara, Yeliz | |
| dc.contributor.author | Birkenmeier, Gary F. | |
| dc.contributor.buuauthor | KARA ŞEN, YELİZ | |
| dc.contributor.department | Fen ve Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Bölümü | |
| dc.contributor.researcherid | AAG-8304-2021 | |
| dc.date.accessioned | 2025-11-06T16:43:29Z | |
| dc.date.issued | 2025-10-18 | |
| dc.description.abstract | In this paper, we provide a framework which enables us to abstract and extend various Baer, quasi-Baer, Rickart, and p.q.-Baer conditions (i.e., Baer annihilator conditions) for modules. In particular, this framework allows us to generalize the theory of Baer annihilator conditions for right R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{R}}$$\end{document}-modules of T.K. Lee and Y. Zhou and the theory of Baer annihilator conditions for (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, {\varvec{R}})$$\end{document}-bimodules of G. Lee, S.T. Rizvi, and C.S. Roman where H=End(MR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}= {\varvec{End}}({\varvec{M}}_{\varvec{R}})$$\end{document} and M is a right R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{R}$$\end{document}-module. To encompass the theory of Baer annihilator conditions for (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, \varvec{R})$$\end{document}-bimodules of Lee, Rizvi, and Roman, we consider Baer annihilator conditions for (S,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(S, R)}}$$\end{document}-bimodules where S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} may not be H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}. One of the major pioneering results of the (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, {\varvec{R}})$$\end{document}-bimodule theory by Rizvi and Roman was to obtain a module analogue of the Chatters-Khuri Theorem which links the Baer condition and the extending condition for rings.Our theory generalizes the Rizvi-Roman result to (S,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(S, R)}}$$\end{document}-bimodules where S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} is not restricted to being H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}. Among other results, we investigate conditions on S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} or a left S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document}-module, M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{M}}$$\end{document}, such that either one or both satisfy a Baer annihilator condition. Examples are provided to illustrate and delimit our results. | |
| dc.identifier.doi | 10.1007/s00009-025-02973-5 | |
| dc.identifier.issn | 1660-5446 | |
| dc.identifier.issue | 8 | |
| dc.identifier.scopus | 2-s2.0-105019241564 | |
| dc.identifier.uri | https://doi.org/10.1007/s00009-025-02973-5 | |
| dc.identifier.uri | https://hdl.handle.net/11452/56601 | |
| dc.identifier.volume | 22 | |
| dc.identifier.wos | 001595866000002 | |
| dc.indexed.wos | WOS.SCI | |
| dc.language.iso | en | |
| dc.publisher | Springer basel ag | |
| dc.relation.journal | Mediterranean journal of mathematics | |
| dc.subject | Direct sums | |
| dc.subject | Annihilators | |
| dc.subject | Bimodule | |
| dc.subject | Baer module | |
| dc.subject | Quasi-Baer module | |
| dc.subject | Rickart module | |
| dc.subject | P.Q.-Baer module | |
| dc.subject | Science & technology | |
| dc.subject | Physical sciences | |
| dc.subject | Mathematics, applied | |
| dc.subject | Mathematics | |
| dc.title | Baer and extending conditions on modules and bimodules | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen ve Edebiyat Fakültesi/Matematik Bölümü | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | cefc08b2-e6fe-4b0b-846e-f8d1b36b7066 | |
| relation.isAuthorOfPublication.latestForDiscovery | cefc08b2-e6fe-4b0b-846e-f8d1b36b7066 |
