Yayın:
Baer and extending conditions on modules and bimodules

dc.contributor.authorKara, Yeliz
dc.contributor.authorBirkenmeier, Gary F.
dc.contributor.buuauthorKARA ŞEN, YELİZ
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.researcheridAAG-8304-2021
dc.date.accessioned2025-11-06T16:43:29Z
dc.date.issued2025-10-18
dc.description.abstractIn this paper, we provide a framework which enables us to abstract and extend various Baer, quasi-Baer, Rickart, and p.q.-Baer conditions (i.e., Baer annihilator conditions) for modules. In particular, this framework allows us to generalize the theory of Baer annihilator conditions for right R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{R}}$$\end{document}-modules of T.K. Lee and Y. Zhou and the theory of Baer annihilator conditions for (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, {\varvec{R}})$$\end{document}-bimodules of G. Lee, S.T. Rizvi, and C.S. Roman where H=End(MR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}= {\varvec{End}}({\varvec{M}}_{\varvec{R}})$$\end{document} and M is a right R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{R}$$\end{document}-module. To encompass the theory of Baer annihilator conditions for (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, \varvec{R})$$\end{document}-bimodules of Lee, Rizvi, and Roman, we consider Baer annihilator conditions for (S,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(S, R)}}$$\end{document}-bimodules where S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} may not be H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}. One of the major pioneering results of the (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, {\varvec{R}})$$\end{document}-bimodule theory by Rizvi and Roman was to obtain a module analogue of the Chatters-Khuri Theorem which links the Baer condition and the extending condition for rings.Our theory generalizes the Rizvi-Roman result to (S,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(S, R)}}$$\end{document}-bimodules where S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} is not restricted to being H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}. Among other results, we investigate conditions on S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} or a left S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document}-module, M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{M}}$$\end{document}, such that either one or both satisfy a Baer annihilator condition. Examples are provided to illustrate and delimit our results.
dc.identifier.doi10.1007/s00009-025-02973-5
dc.identifier.issn1660-5446
dc.identifier.issue8
dc.identifier.scopus2-s2.0-105019241564
dc.identifier.urihttps://doi.org/10.1007/s00009-025-02973-5
dc.identifier.urihttps://hdl.handle.net/11452/56601
dc.identifier.volume22
dc.identifier.wos001595866000002
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer basel ag
dc.relation.journalMediterranean journal of mathematics
dc.subjectDirect sums
dc.subjectAnnihilators
dc.subjectBimodule
dc.subjectBaer module
dc.subjectQuasi-Baer module
dc.subjectRickart module
dc.subjectP.Q.-Baer module
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics, applied
dc.subjectMathematics
dc.titleBaer and extending conditions on modules and bimodules
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationcefc08b2-e6fe-4b0b-846e-f8d1b36b7066
relation.isAuthorOfPublication.latestForDiscoverycefc08b2-e6fe-4b0b-846e-f8d1b36b7066

Dosyalar