Yayın:
Baer and extending conditions on modules and bimodules

Placeholder

Akademik Birimler

Kurum Yazarları

Yazarlar

Kara, Yeliz
Birkenmeier, Gary F.

Danışman

Dil

Türü

Yayıncı:

Springer basel ag

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

In this paper, we provide a framework which enables us to abstract and extend various Baer, quasi-Baer, Rickart, and p.q.-Baer conditions (i.e., Baer annihilator conditions) for modules. In particular, this framework allows us to generalize the theory of Baer annihilator conditions for right R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{R}}$$\end{document}-modules of T.K. Lee and Y. Zhou and the theory of Baer annihilator conditions for (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, {\varvec{R}})$$\end{document}-bimodules of G. Lee, S.T. Rizvi, and C.S. Roman where H=End(MR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}= {\varvec{End}}({\varvec{M}}_{\varvec{R}})$$\end{document} and M is a right R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{R}$$\end{document}-module. To encompass the theory of Baer annihilator conditions for (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, \varvec{R})$$\end{document}-bimodules of Lee, Rizvi, and Roman, we consider Baer annihilator conditions for (S,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(S, R)}}$$\end{document}-bimodules where S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document} may not be H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}. One of the major pioneering results of the (H,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textbf{H}, {\varvec{R}})$$\end{document}-bimodule theory by Rizvi and Roman was to obtain a module analogue of the Chatters-Khuri Theorem which links the Baer condition and the extending condition for rings.Our theory generalizes the Rizvi-Roman result to (S,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(S, R)}}$$\end{document}-bimodules where S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} is not restricted to being H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}. Among other results, we investigate conditions on S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} or a left S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document}-module, M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{M}}$$\end{document}, such that either one or both satisfy a Baer annihilator condition. Examples are provided to illustrate and delimit our results.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Direct sums, Annihilators, Bimodule, Baer module, Quasi-Baer module, Rickart module, P.Q.-Baer module, Science & technology, Physical sciences, Mathematics, applied, Mathematics

Alıntı

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details