Yayın:
On the second hankel determinant of certain subclass of bi-univalent functions

dc.contributor.authorAtshan, Waggas Galib
dc.contributor.authorRahman, Ibtihal Abdul Ridha
dc.contributor.authorYalçın, Sibel
dc.contributor.buuauthorYALÇIN TOKGÖZ, SİBEL
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-0243-8263
dc.contributor.researcheridAAE-9745-2020
dc.date.accessioned2025-10-21T09:11:26Z
dc.date.issued2025-06-01
dc.description.abstractIn this paper, we define subclass D Sigma(delta,beta,alpha,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {D}}_{\Sigma }(\delta ,\beta ,\alpha ,t)$$\end{document} of the function class Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} of bi-univalent functions defined in the open unit disk in the complex plane. Using Chebyshev polynomials, we have investigated the upper bound for the second Hankel determinant for this function class.
dc.identifier.doi10.1007/s13370-025-01269-x
dc.identifier.issn1012-9405
dc.identifier.issue2
dc.identifier.scopus2-s2.0-105000036142
dc.identifier.urihttps://doi.org/10.1007/s13370-025-01269-x
dc.identifier.urihttps://hdl.handle.net/11452/55897
dc.identifier.volume36
dc.identifier.wos001445846800001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherSpringer heidelberg
dc.relation.journalAfrika matematika
dc.subjectCoefficient
dc.subjectSubordination
dc.subjectBi-univalent function
dc.subjectAnalytic function
dc.subjectHankel determinant
dc.subjectCoefficient bounds
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleOn the second hankel determinant of certain subclass of bi-univalent functions
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication810440e4-c926-4301-a0cc-b455e6d6e960
relation.isAuthorOfPublication.latestForDiscovery810440e4-c926-4301-a0cc-b455e6d6e960

Dosyalar