Yayın: On the second hankel determinant of certain subclass of bi-univalent functions
Tarih
Kurum Yazarları
Yazarlar
Atshan, Waggas Galib
Rahman, Ibtihal Abdul Ridha
Yalçın, Sibel
Danışman
Dil
Türü
Yayıncı:
Springer heidelberg
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
In this paper, we define subclass D Sigma(delta,beta,alpha,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {D}}_{\Sigma }(\delta ,\beta ,\alpha ,t)$$\end{document} of the function class Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} of bi-univalent functions defined in the open unit disk in the complex plane. Using Chebyshev polynomials, we have investigated the upper bound for the second Hankel determinant for this function class.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Coefficient, Subordination, Bi-univalent function, Analytic function, Hankel determinant, Coefficient bounds, Science & technology, Physical sciences, Mathematics
