Yayın:
On the second hankel determinant of certain subclass of bi-univalent functions

Placeholder

Akademik Birimler

Kurum Yazarları

Yazarlar

Atshan, Waggas Galib
Rahman, Ibtihal Abdul Ridha
Yalçın, Sibel

Danışman

Dil

Türü

Yayıncı:

Springer heidelberg

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

In this paper, we define subclass D Sigma(delta,beta,alpha,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {D}}_{\Sigma }(\delta ,\beta ,\alpha ,t)$$\end{document} of the function class Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} of bi-univalent functions defined in the open unit disk in the complex plane. Using Chebyshev polynomials, we have investigated the upper bound for the second Hankel determinant for this function class.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Coefficient, Subordination, Bi-univalent function, Analytic function, Hankel determinant, Coefficient bounds, Science & technology, Physical sciences, Mathematics

Alıntı

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads

View PlumX Details