Publication:
Data sharing in predret for accurate prediction of retention time: Application to plant food bioactive compounds

dc.contributor.authorLow, Dorrain Yanwen
dc.contributor.authorMicheau, Pierre
dc.contributor.authorKoistinen, Ville Mikael
dc.contributor.authorHanhineva, Kati
dc.contributor.authorAbranko, Laszlo
dc.contributor.authorRodriguez-Mateos, Ana
dc.contributor.authorda Silva, Andreia Bento
dc.contributor.authorvan Poucke, Christof
dc.contributor.authorAlmeida, Conceicao
dc.contributor.authorAndres-Lacueva, Cristina
dc.contributor.authorRai, Dilip K.
dc.contributor.authorCapanoglu, Esra
dc.contributor.authorBarberan, Francisco A. Tomas
dc.contributor.authorMattivi, Fulvio
dc.contributor.authorSchmidt, Gesine
dc.contributor.authorGurdeniz, Gozde
dc.contributor.authorValentov, Katerina
dc.contributor.authorBresciani, Letizia
dc.contributor.authorPetraskova, Lucie
dc.contributor.authorDragsted, Lars Ove
dc.contributor.authorPhilo, Mark
dc.contributor.authorUlaszewska, Marynka
dc.contributor.authorMena, Pedro
dc.contributor.authorGonzalez-Dominguez, Raul
dc.contributor.authorGarcia-Villalba, Rocio
dc.contributor.authorde Pascual-Teresa, Sonia
dc.contributor.authorDurand, Stephanie
dc.contributor.authorWiczkowski, Wieslaw
dc.contributor.authorBronze, Maria Rosario
dc.contributor.authorStanstrup, Jan
dc.contributor.authorManach, Claudine
dc.contributor.buuauthorKamiloglu, Senem
dc.contributor.buuauthorKAMİLOĞLU BEŞTEPE, SENEM
dc.contributor.orcid0000-0003-3902-4360
dc.contributor.researcheridP-3633-2018
dc.date.accessioned2024-11-29T05:52:49Z
dc.date.available2024-11-29T05:52:49Z
dc.date.issued2021-04-16
dc.description.abstractPrediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) topredict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29-103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03-0.76 min and interval width of 0.33-8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet's accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
dc.description.sponsorshipEuropean Cooperation in Science and Technology (COST) FA 1403
dc.description.sponsorshipEuropean Union (EU) 609398
dc.description.sponsorshipNanyang Technological University 001991-00001
dc.description.sponsorshipINRAE platform (PFEM, MetaboHUBClermont) ANR-INBS-0010
dc.description.sponsorshipGrant Agency of the Czech Republic 19-00043S
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (FCT)
dc.description.sponsorshipPORTUGAL 2020 LISBOA-01-0145-FEDER-402-022125
dc.description.sponsorshipResearch Council of Finland 277986
dc.description.sponsorshipLantmannen Foundation
dc.description.sponsorshipEU H2020 FP7-Marie Curie-COFUND MoRE Programme 754412
dc.description.sponsorshipBiocenter Finland
dc.description.sponsorshipCIBERFES project
dc.description.sponsorshipISCIII project AC19/00111 AC19/00096
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipGeneralitat de Catalunya's Agency AGAUR 2017SGR1546
dc.description.sponsorship"Juan de la Cierva" program from MINECO IJC2019-041867-I
dc.description.sponsorshipICREA
dc.description.sponsorshipSpanish Government AGL-2015-73107EXP/AEI CSIC 201870E014 Fundacion Seneca 19900/GERM/15
dc.description.sponsorshipNorwegian Agriculture and Food Industry Research Funds 262300
dc.description.sponsorshipCarlsberg Foundation
dc.description.sponsorshipHungarian Academy of Sciences
dc.description.sponsorshipESF
dc.description.sponsorshipproject of SZIU EFOP-3.6.3-VEKOP-16-201700005
dc.description.sponsorshipSpanish Government AGL2016-76832-R
dc.description.sponsorshipWalsh Fellowship 2016038
dc.description.sponsorshipEuropean Research Council (ERC) 277986
dc.description.sponsorshipResearch Council of Finland 312550
dc.identifier.doi10.1016/j.foodchem.2021.129757
dc.identifier.issn0308-8146
dc.identifier.urihttps://doi.org/10.1016/j.foodchem.2021.129757
dc.identifier.urihttps://hdl.handle.net/11452/48680
dc.identifier.volume357
dc.identifier.wos000655533400011
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier Sci Ltd
dc.relation.journalFood Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMetabolome
dc.subjectSuspect
dc.subjectPredicted retention time
dc.subjectMetabolomics
dc.subjectPlant food bioactive compounds
dc.subjectMetabolites
dc.subjectData sharing
dc.subjectUhplc
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectLife sciences & biomedicine
dc.subjectChemistry, applied
dc.subjectNutrition & dietetics
dc.subjectChemistry
dc.subjectFood science & technology
dc.titleData sharing in predret for accurate prediction of retention time: Application to plant food bioactive compounds
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication5b927446-2c67-44ca-9435-3496356c40be
relation.isAuthorOfPublication.latestForDiscovery5b927446-2c67-44ca-9435-3496356c40be

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kamiloğlu_vd_2021.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format

Collections