Publication: Data sharing in predret for accurate prediction of retention time: Application to plant food bioactive compounds
Date
2021-04-16
Authors
Kamiloglu, Senem
Authors
Low, Dorrain Yanwen
Micheau, Pierre
Koistinen, Ville Mikael
Hanhineva, Kati
Abranko, Laszlo
Rodriguez-Mateos, Ana
da Silva, Andreia Bento
van Poucke, Christof
Almeida, Conceicao
Andres-Lacueva, Cristina
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Sci Ltd
Abstract
Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) topredict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29-103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03-0.76 min and interval width of 0.33-8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet's accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
Description
Keywords
Metabolome, Suspect, Predicted retention time, Metabolomics, Plant food bioactive compounds, Metabolites, Data sharing, Uhplc, Science & technology, Physical sciences, Life sciences & biomedicine, Chemistry, applied, Nutrition & dietetics, Chemistry, Food science & technology