Yayın:
On congruences involving harmonic numbers H3n and H3n+r

dc.contributor.authorElkhiri, Laid
dc.contributor.authorÖmür, Neşe
dc.contributor.buuauthorKOPARAL, SİBEL
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.researcheridFFN-3081-2022
dc.date.accessioned2025-10-21T09:27:25Z
dc.date.issued2025-08-20
dc.description.abstractIn this paper, we establish various congruences involving harmonic numbers H3n and H3n+r modulo prime number p, ie., ∑0≤k≤[p/3]H3k2(modp) and ∑0≤k≤[p/3]H3k+r3k+r(modp). Also, we give the generalization of Meštrović’s congruence, ie., for any prime number p≥5, (Formula presented.) where r∈{1,2,3}.
dc.identifier.doi10.1007/s13226-025-00848-9
dc.identifier.issn0019-5588
dc.identifier.scopus2-s2.0-105013626363
dc.identifier.urihttps://doi.org/10.1007/s13226-025-00848-9
dc.identifier.urihttps://hdl.handle.net/11452/56033
dc.identifier.wos001553756700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherIndian National Science Academy
dc.relation.journalIndian Journal of Pure & Applied Mathematics
dc.subjectBernoulli numbers
dc.subjectArithmetic theory
dc.subject Fermat
dc.subjectCongruences
dc.subjectHarmonic numbers
dc.subjectAbel sum
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectMathematics
dc.titleOn congruences involving harmonic numbers H3n and H3n+r
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication8cb7f10d-dcea-4fcd-90bb-650fdf67a97c
relation.isAuthorOfPublication.latestForDiscovery8cb7f10d-dcea-4fcd-90bb-650fdf67a97c

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Koparal_vd_2025.pdf
Boyut:
288.14 KB
Format:
Adobe Portable Document Format