Yayın: On congruences involving harmonic numbers H3n and H3n+r
| dc.contributor.author | Elkhiri, Laid | |
| dc.contributor.author | Ömür, Neşe | |
| dc.contributor.buuauthor | KOPARAL, SİBEL | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Ana Bilim Dalı | |
| dc.contributor.researcherid | FFN-3081-2022 | |
| dc.date.accessioned | 2025-10-21T09:27:25Z | |
| dc.date.issued | 2025-08-20 | |
| dc.description.abstract | In this paper, we establish various congruences involving harmonic numbers H3n and H3n+r modulo prime number p, ie., ∑0≤k≤[p/3]H3k2(modp) and ∑0≤k≤[p/3]H3k+r3k+r(modp). Also, we give the generalization of Meštrović’s congruence, ie., for any prime number p≥5, (Formula presented.) where r∈{1,2,3}. | |
| dc.identifier.doi | 10.1007/s13226-025-00848-9 | |
| dc.identifier.issn | 0019-5588 | |
| dc.identifier.scopus | 2-s2.0-105013626363 | |
| dc.identifier.uri | https://doi.org/10.1007/s13226-025-00848-9 | |
| dc.identifier.uri | https://hdl.handle.net/11452/56033 | |
| dc.identifier.wos | 001553756700001 | |
| dc.indexed.wos | WOS.SCI | |
| dc.language.iso | en | |
| dc.publisher | Indian National Science Academy | |
| dc.relation.journal | Indian Journal of Pure & Applied Mathematics | |
| dc.subject | Bernoulli numbers | |
| dc.subject | Arithmetic theory | |
| dc.subject | Fermat | |
| dc.subject | Congruences | |
| dc.subject | Harmonic numbers | |
| dc.subject | Abel sum | |
| dc.subject | Science & Technology | |
| dc.subject | Physical Sciences | |
| dc.subject | Mathematics | |
| dc.title | On congruences involving harmonic numbers H3n and H3n+r | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/Matematik Ana Bilim Dalı | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 8cb7f10d-dcea-4fcd-90bb-650fdf67a97c | |
| relation.isAuthorOfPublication.latestForDiscovery | 8cb7f10d-dcea-4fcd-90bb-650fdf67a97c |
Dosyalar
Orijinal seri
1 - 1 / 1
