Yayın: On congruences involving harmonic numbers H3n and H3n+r
Dosyalar
Tarih
Kurum Yazarları
Yazarlar
Elkhiri, Laid
Ömür, Neşe
Danışman
Dil
Türü
Yayıncı:
Indian National Science Academy
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
In this paper, we establish various congruences involving harmonic numbers H3n and H3n+r modulo prime number p, ie., ∑0≤k≤[p/3]H3k2(modp) and ∑0≤k≤[p/3]H3k+r3k+r(modp). Also, we give the generalization of Meštrović’s congruence, ie., for any prime number p≥5, (Formula presented.) where r∈{1,2,3}.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Bernoulli numbers, Arithmetic theory, Fermat, Congruences, Harmonic numbers, Abel sum, Science & Technology, Physical Sciences, Mathematics
