Yayın:
On congruences involving harmonic numbers H3n and H3n+r

Küçük Resim

Akademik Birimler

Kurum Yazarları

Yazarlar

Elkhiri, Laid
Ömür, Neşe

Danışman

Dil

Türü

Yayıncı:

Indian National Science Academy

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

In this paper, we establish various congruences involving harmonic numbers H3n and H3n+r modulo prime number p, ie., ∑0≤k≤[p/3]H3k2(modp) and ∑0≤k≤[p/3]H3k+r3k+r(modp). Also, we give the generalization of Meštrović’s congruence, ie., for any prime number p≥5, (Formula presented.) where r∈{1,2,3}.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Bernoulli numbers, Arithmetic theory, Fermat, Congruences, Harmonic numbers, Abel sum, Science & Technology, Physical Sciences, Mathematics

Alıntı

Endorsement

Review

Supplemented By

Referenced By

2

Views

19

Downloads

View PlumX Details