Publication:
Representations of positive integers by a direct sum of quadratic forms

dc.contributor.authorTekcan A.
dc.contributor.buuauthorTEKCAN, AHMET
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.scopusid55883777900
dc.date.accessioned2025-05-13T14:20:55Z
dc.date.issued2004-08-01
dc.description.abstractThe number of representation of positive integers by quadratic forms F1=x12+3x1x2+8x22 and G1=2x12+3x1x2+4x22 of discriminant —23 are given. Moreover, a basis for the cusp form space S4(Γ0(23), 1) are constructed. Furthermore, formulas for the representation of positive integers by direct sum of copies of F1 and G1, i.e. formulas for r(n; F4), r(n; G4), r(n; F3 ⊕ G1), r(n; F2 ⊕ G2), and r(n; F1 ⊕ G3), are derived using the elements of the space S4(Γ(23), 1).
dc.identifier.doi10.1007/BF03322877
dc.identifier.endpage163
dc.identifier.issn1422-6383
dc.identifier.issue1-2
dc.identifier.scopus2-s2.0-33747182910
dc.identifier.startpage146
dc.identifier.urihttps://hdl.handle.net/11452/52876
dc.identifier.volume46
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherBirkhauser Verlag AG
dc.relation.journalResults in Mathematics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectGuadratic forms
dc.subjectGeneralized theta series
dc.subjectCusp forms
dc.subject.scopusCusp Form; Theta Function; Number
dc.titleRepresentations of positive integers by a direct sum of quadratic forms
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
relation.isAuthorOfPublication17944028-a562-4782-b38f-cb890c6f31bf
relation.isAuthorOfPublication.latestForDiscovery17944028-a562-4782-b38f-cb890c6f31bf

Files

Collections