Yayın:
Representations of positive integers by a direct sum of quadratic forms

Placeholder

Akademik Birimler

Kurum Yazarları

Yazarlar

Tekcan A.

Danışman

Dil

Türü

Yayıncı:

Birkhauser Verlag AG

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

The number of representation of positive integers by quadratic forms F1=x12+3x1x2+8x22 and G1=2x12+3x1x2+4x22 of discriminant —23 are given. Moreover, a basis for the cusp form space S4(Γ0(23), 1) are constructed. Furthermore, formulas for the representation of positive integers by direct sum of copies of F1 and G1, i.e. formulas for r(n; F4), r(n; G4), r(n; F3 ⊕ G1), r(n; F2 ⊕ G2), and r(n; F1 ⊕ G3), are derived using the elements of the space S4(Γ(23), 1).

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Guadratic forms, Generalized theta series, Cusp forms

Alıntı

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details