Publication:
Thermal assessment of laminar flow liquid cooling blocks for LED circuit boards used in automotive headlight assemblies

Thumbnail Image

Organizational Units

Authors

Kılıç, Muhsin
Sevilgen, Gökhan

Authors

Aktaş, Mehmet

Advisor

Language

Publisher:

MDPI

Journal Title

Journal ISSN

Volume Title

Abstract

This research work presents a comparative thermal performance assessment of the laminar flow cooling blocks produced for automotive headlight assembly using a high power Light Emitting Diode (LED) chip. A three-dimensional numerical model with conjugate heat transfer in solid and fluid domains was used. Laminar flow was considered in the present analysis. The validation of the numerical model was realized by using the measured data from the test rig. It was observed that substantial temperature variations were occurred around the LED chip owing to volumetric heat generation. The cooling board with lower height performs better thermal performance but higher pressure drop for the same mass flow rates. The cooling board with the finned cover plate performs better thermal performance but results in an increased pressure drop for the same mass flow rates. Increasing the power of the LED results in higher temperature values for the same mass flow rates. The junction temperature is highly dependent on the mass flow rates and LED power. It can be controlled by means of the mass flow rate of the coolant fluid. New Nusselt number correlations are proposed for laminar flow mini-channel liquid cooling block applications.

Description

Source:

Keywords:

Keywords

Energy & fuels, Automotive headlight, CFD, LED chip, Junction temperature, Liquid cooling, Finned plate, Laminar flow, Heat-transfer, System, Management, Design, Cooler, Sink, Cooling, Drops, Flow rate, Headlights, Laminar flow, Light emitting diodes, Liquids, Mass transfer, Numerical models, Pressure drop, Thermal management (electronics), Timing circuits, Conjugate heat transfer, High-power light-emitting diodes, Junction temperatures, LED chips, Liquid cooling, Nusselt number correlation, Three-dimensional numerical modeling, Volumetric heat generation, Computational fluid dynamics

Citation

Kılıç, M. vd. (2020). "Thermal assessment of laminar flow liquid cooling blocks for LED circuit boards used in automotive headlight assemblies". Energies, 13(5).

Endorsement

Review

Supplemented By

Referenced By

4

Views

7

Downloads