Özel yetenekli öğrencilere yönelik tasarlanan teknoloji destekli geometri öğretim modülünün ispat ve muhakeme süreçleri açısından incelenmesi
Date
2024-06-12
Authors
Zengin, Derya
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Bu çalışmada, özel yetenekli öğrencilere yönelik tasarlanan teknoloji destekli geometri öğretim modülünün ispat ve muhakeme süreçleri açısından incelenmesi amaçlanmıştır. Çalışmada, nitel bir araştırma olup tasarım tabanlı yaklaşım ile desenlenmiştir. Tasarım tabanlı araştırmada süreç üç aşamada tamamlanmıştır. Birinci aşamada, taslak modeli geliştirilmiş ve ders planları hazırlanmıştır. İkinci aşamada, ilk uygulama yapılmış ve tasarım revize edilmiştir. Üçüncü aşamada, ikinci uygulama yapılmış ve tasarıma son hali verilmiştir. Bu süreç sonucunda, Zengin öğretim modeli geliştirilmiş ve bu model kapsamında 9. sınıf Matematik dersindeki üçgenler ünitesi için 7 örnek ders planlarını içeren bir öğretim modülü tasarlanmıştır. Çalışmanın uygulamaları, 2022-2023 öğretim yılı güz ve bahar dönemlerinde yapılmıştır. Birinci aşamada 50 BİLSEM öğrencisi ve 57 BİLSEM matematik öğretmeni ile ikinci aşamada 2 BİLSEM öğrencisi ve üçüncü aşamada 8 BİLSEM öğrencisi ile çalışmalar gerçekleştirilmiştir. Araştırmada veri toplama aracı olarak; Yarı Yapılandırılmış Görüşme Formu, Açık Uçlu Geometri Alan Bilgisi Testi, Çoklu Zekâ Alanı Envanteri ve Yaratıcılık Ölçeği kullanılmıştır. Aynı zamanda, uygulama sürecinde ders gözlemleri, ses, ekran ve video kayıtları ile veriler toplanmıştır. Çalışmada, görüşme formları içerik analizi ile analiz edilmiştir. Ayrıca, Açık Uçlu Geometri Alan Bilgisi Testi, Çoklu Zekâ Alanı Envanteri ve Yaratıcılık Ölçeği'nden elde edilen veriler veri çözümleme yöntemleri ile analiz edilerek gerekli değerlendirmeler yapılmıştır. Öğrencilerin muhakeme ve ispat süreci, nitel analiz kapsamında Toulmin tartışma modeli ile analiz edilmiştir. Elde edilen veriler düzenlenerek muhakeme ve ispat sürecine yönelik bir analitik çerçeve elde edilmiştir. Araştırma sürecinde, öğretmenlerin ve öğrencilerin BİLSEM 'de uygulanan matematik öğretim programına yönelik bakış açıları ayrıntılı bir şekilde ortaya konulmuştur. Öğrencilerin başarı seviyeleri, yaratıcılıkları ve baskın zekâ alanları benzer olmakla birlikte ispat basamakları süreçlerine yönelik analitik çerçeve incelendiğinde, ispatlarının genellikle alt basamaklarda kaldığı tespit edilmiştir. Matematik öğretim sürecinde ders işleniş şekli, sınıf içi öğrenme yaşantıları, bireysel ispat çalışmaları, öğrenme ortamı ve GeoGebra yazılımının öğrenme sürecinde önemli bir rol oynadığı görülmüştür. Bu bağlamda, hem kişisel hem de çevresel faktörlerin ispat yetenekleri üzerinde etkili olduğu sonucuna varılmıştır. Çalışmada elde edilen sonuçlar göz önünde bulundurulduğunda araştırmanın matematik öğretim süreçlerine katkı sağlayacağı, matematik öğretmenleri için örnek ve kaynak teşkil edeceği ve ileride yapılacak çeşitli çalışmalara katkı sunacağı düşünülmektedir.
This study aims to examine the proof and reasoning processes of a technology-supported geometry teaching module designed for gifted students. The study is qualitative research structured with a design-based approach. The design-based research process was completed in three stages. In the first stage, the draft model was developed, and lesson plans were prepared. In the second stage, the initial application was conducted, and the design was revised. In the third stage, the second application was conducted, and the final design was completed. As a result of this process, the Zengin teaching model was developed, and within this model, an instructional module containing seven sample lesson plans for the triangles unit in the 9th-grade mathematics course was designed. The applications of the study were carried out during the fall and spring semesters ofthe 2022-2023 academic year. In the first stage, 50 BİLSEM students and 57 BİLSEM mathematics teachers participated; in the second stage, 2 BİLSEM students; and in the thirdstage, 8 BİLSEM students were involved. Data collection tools used in the research included a Semi-Structured Interview Form,an Open-Ended Geometry Content Knowledge Test, a Multiple Intelligence Inventory, and a Creativity Scale. Additionally, during the application process, data were collected throughclassroom observations, audio, screen, and video recordings.In the study, the interview forms were analyzed using content analysis. Furthermore, data obtained from the Open-Ended Geometry Content Knowledge Test, the MultipleIntel ligence Inventory, and the Creativity Scale were analyzed using data analysis methods, andnecessary evaluations were made. The students' reasoning and proof processes were analyzedusing Toulmin's argumentation model within the scope of qualitative analysis. The dataobtained were organized to develop an analytical framework for the reasoning and proofprocesses. During the research process, the perspectives of teachers and students on themathematics teaching program implemented at BİLSEM were detailed. While students’ success levels, creativity, and dominant intelligence areas were similar, the analytical framework for the proof steps indicated that their proofs generally remained at lower levels. The method of lesson delivery, in-class learning experiences, individual proof studies, the learning environment, and the use of GeoGebra software were found to play significant roles in the mathematics teaching process. In this context, it was concluded that both personal and environmental factors influence proof abilities. Considering the results obtained from the study, it is believed that the research will contribute to mathematics teaching processes, serve as an example and resource for mathematics teachers, and provide insights for future studies.
This study aims to examine the proof and reasoning processes of a technology-supported geometry teaching module designed for gifted students. The study is qualitative research structured with a design-based approach. The design-based research process was completed in three stages. In the first stage, the draft model was developed, and lesson plans were prepared. In the second stage, the initial application was conducted, and the design was revised. In the third stage, the second application was conducted, and the final design was completed. As a result of this process, the Zengin teaching model was developed, and within this model, an instructional module containing seven sample lesson plans for the triangles unit in the 9th-grade mathematics course was designed. The applications of the study were carried out during the fall and spring semesters ofthe 2022-2023 academic year. In the first stage, 50 BİLSEM students and 57 BİLSEM mathematics teachers participated; in the second stage, 2 BİLSEM students; and in the thirdstage, 8 BİLSEM students were involved. Data collection tools used in the research included a Semi-Structured Interview Form,an Open-Ended Geometry Content Knowledge Test, a Multiple Intelligence Inventory, and a Creativity Scale. Additionally, during the application process, data were collected throughclassroom observations, audio, screen, and video recordings.In the study, the interview forms were analyzed using content analysis. Furthermore, data obtained from the Open-Ended Geometry Content Knowledge Test, the MultipleIntel ligence Inventory, and the Creativity Scale were analyzed using data analysis methods, andnecessary evaluations were made. The students' reasoning and proof processes were analyzedusing Toulmin's argumentation model within the scope of qualitative analysis. The dataobtained were organized to develop an analytical framework for the reasoning and proofprocesses. During the research process, the perspectives of teachers and students on themathematics teaching program implemented at BİLSEM were detailed. While students’ success levels, creativity, and dominant intelligence areas were similar, the analytical framework for the proof steps indicated that their proofs generally remained at lower levels. The method of lesson delivery, in-class learning experiences, individual proof studies, the learning environment, and the use of GeoGebra software were found to play significant roles in the mathematics teaching process. In this context, it was concluded that both personal and environmental factors influence proof abilities. Considering the results obtained from the study, it is believed that the research will contribute to mathematics teaching processes, serve as an example and resource for mathematics teachers, and provide insights for future studies.
Description
Keywords
Dinamik geometri yazılımı, Farklılaştırılmış öğretim, Geometri öğretimi, Muhakeme ve ispat, Özel yetenekli öğrenciler, Differentiated instruction, Dynamic geometry software, Geometry content knowledge, Geometry teaching, Gifted students, Reasoning and proof