Publication: Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials
Files
Date
Authors
Uzun, Büşra
Authors
Civalek, Ömer
Advisor
Language
Type
Publisher:
Mdpi
Journal Title
Journal ISSN
Volume Title
Abstract
In this study, free vibration behaviors of various embedded nanowires made of different materials are investigated by using Eringen's nonlocal elasticity theory. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW) are modeled as Euler-Bernoulli nanobeams with various boundary conditions such as simply supported (S-S), clamped simply supported (C-S), clamped-clamped (C-C), and clamped-free (C-F). The interactions between nanowires and medium are simulated by the Winkler elastic foundation model. The Galerkin weighted residual method is applied to the governing equations to gain stiffness and mass matrices. The results are given by tables and graphs. The effects of small-scale parameters, boundary conditions, and foundation parameters on frequencies are examined in detail. In addition, the influence of temperature change on the vibrational responses of the nanowires are also pursued as a case study.
Description
Source:
Keywords:
Keywords
Nonlocal elasticity theory, Galerkin weighted residual fem, Silicon carbide nanowire, Silver nanowire, Gold nanowire, Foundations, Mathematics
Citation
Uzun, B. ve Civalek, Ö. (2019). ''Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials''. Mathematical and Computational Applications, 24(2).