Publication: Elektrikli araç bataryası mekanik davranışının homojen malzeme modelleri kullanılarak sonlu elemanlar yöntemiyle modellenmesi
Date
Authors
Authors
Şimşek, Tuğberk İsmail
Advisor
Çakan, Betül Gülçimen
Language
Type
Publisher:
Bursa Uludağ Üniversitesi
Journal Title
Journal ISSN
Volume Title
Abstract
Bu çalışmada, elektrikli araç batarya taşıyıcılarında kullanılan kese tipi pil hücrelerinin homojenleştirilmiş bir sonlu elemanlar modeli geliştirilmiştir. Pil hücrelerinin yapısal ve mekanik özelliklerini analiz etmek amacıyla LS-DYNA yazılımı kullanılmıştır. Literatürdeki mevcut modellerde, yüksek doğruluk sağlanırken hesaplama verimliliği düşük olabilmektedir. Bu çalışmanın temel amacı, hızlı hesaplanabilir ve yüksek doğruluk sağlayan bir malzeme modeli geliştirmek olmuştur. Geliştirilen model üç yönde basma ve eğme testleri ile kontrol edilerek korelasyon oranları doğrulanmıştır. Modelleme sürecinde, homojenleştirme yöntemleri kullanılarak pil hücresinin farklı bileşenlerinin etkileri bir arada değerlendirilmiş ve bu şekilde hesaplama maliyeti önemli ölçüde azaltılmıştır. Sonuçlar, önerilen modelin kuvvet-deplasman açısından yüksek doğruluk içererek sonlu elemanlar analizlerindeki doğruluğunu ortaya koymuştur. Düşük eleman sayısı ve uygun malzeme modeli (MAT26 Bal Peteği) ile yüksek doğruluk sağlarken düşük hesaplama zorluğu yakalanmıştır. Modellemedeki hız arttırıcı diğer sonlu elemanlar analizi tekniklerine ve tavsiyelerine de çalışma içinde değinilmiştir. Yandan çarpma veya alttan çarpma senaryolarının analizlerinde başlıca dahil edilebilecek bu modelleme, ilerideki çalışmalar için geliştirilmeye müsait bir yaklaşım sunmaktadır. Bu çalışma, elektrikli araç pil hücrelerinin tasarım ve analiz süreçlerinde daha hızlı ve etkin yöntemlerin uygulanmasına katkı sunmayı hedeflemektedir.
In this study, a homogenized finite element model of battery pouch cells used in electric vehicle battery carriers was developed. LS-DYNA software was used to analyze the structural and mechanical properties of battery cells. In the existing models in the literature, while high accuracy is provided, computational efficiency can be low. The main purpose of this study is to develop a material model that can be calculated quickly and provides high accuracy. The developed model was checked with compression and bending tests in three directions and correlation ratios were verified. In the modeling process, the effects of different components of the battery cell were evaluated together using homogenization methods and in this way, the computational cost was significantly reduced. The results revealed the accuracy of the proposed model in finite element analyses by including high accuracy in terms of force-displacement. With the low number of elements and the appropriate material model (MAT26 Honeycomb), high accuracy was reached while low computational difficulty was achieved. Other finite element analysis techniques and recommendations that increase the speed in modeling were also mentioned in the study. This modeling, which can be included in the analysis of side impact or bottom impact scenarios, offers an approach suitable for development for future studies. This study aims to contribute to the application of faster and more effective methods in the design and analysis processes of electric vehicle battery cells.
In this study, a homogenized finite element model of battery pouch cells used in electric vehicle battery carriers was developed. LS-DYNA software was used to analyze the structural and mechanical properties of battery cells. In the existing models in the literature, while high accuracy is provided, computational efficiency can be low. The main purpose of this study is to develop a material model that can be calculated quickly and provides high accuracy. The developed model was checked with compression and bending tests in three directions and correlation ratios were verified. In the modeling process, the effects of different components of the battery cell were evaluated together using homogenization methods and in this way, the computational cost was significantly reduced. The results revealed the accuracy of the proposed model in finite element analyses by including high accuracy in terms of force-displacement. With the low number of elements and the appropriate material model (MAT26 Honeycomb), high accuracy was reached while low computational difficulty was achieved. Other finite element analysis techniques and recommendations that increase the speed in modeling were also mentioned in the study. This modeling, which can be included in the analysis of side impact or bottom impact scenarios, offers an approach suitable for development for future studies. This study aims to contribute to the application of faster and more effective methods in the design and analysis processes of electric vehicle battery cells.
Description
Source:
Keywords:
Keywords
EV, Pil, Sonlu elemanlar, Homojen, Model, Malzeme, Battery cell, Finite elements, Homogeneus, Material