A neural network-based approach for calculating dissolved oxygen profiles in reservoirs

dc.contributor.authorGürbüz, Hasan
dc.contributor.authorKıvrak, Ersin
dc.contributor.authorYazıcı, Ali
dc.contributor.buuauthorSoyupak, Selçuk
dc.contributor.buuauthorKaraer, Feza
dc.contributor.buuauthorŞentürk, Engin
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Çevre Mühendisliği Bölümü.tr_TR
dc.contributor.researcheridAAH-3984-2021tr_TR
dc.contributor.researcheridA-9965-2008tr_TR
dc.date.accessioned2021-07-13T12:21:47Z
dc.date.available2021-07-13T12:21:47Z
dc.date.issued2003-12
dc.description.abstractA Neural Network (NN) modelling approach has been shown to be successful in calculating pseudo steady state time and space dependent Dissolved Oxygen (DO) concentrations in three separate reservoirs with different characteristics using limited number of input variables. The Levenberg-Marquardt algorithm was adopted during training. Pre-processing before training and post processing after simulation steps were the treatments applied to raw data and predictions respectively. Generalisation was improved and over-fitting problems were eliminated: Early stopping method was applied for improving generalisation. The correlation coefficients between neural network estimates and field measurements were as high as 0.98 for two of the reservoirs with experiments that involve double layer neural network structure with 30 neurons within each hidden layer. A simple one layer neural network structure with 11 neurons has yielded comparable and satisfactorily high correlation coefficients for complete data set, and training, validation and test sets of the third reservoir.en_US
dc.identifier.citationGürbüz, H. vd. (2003). “A neural network-based approach for calculating dissolved oxygen profiles in reservoirs”. Neural Computing & Applications, 12(3-4), 166-172.en_US
dc.identifier.endpage172tr_TR
dc.identifier.issn0941-0643
dc.identifier.issue3-4tr_TR
dc.identifier.scopus2-s2.0-0346972461tr_TR
dc.identifier.startpage166tr_TR
dc.identifier.urihttps://doi.org/10.1007/s00521-003-0378-8
dc.identifier.urihttps://link.springer.com/article/10.1007/s00521-003-0378-8
dc.identifier.urihttp://hdl.handle.net/11452/21250
dc.identifier.volume12tr_TR
dc.identifier.wos000187658900006tr_TR
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSpringer Londonen_US
dc.relation.collaborationYurt içitr_TR
dc.relation.journalNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDissolved oxygenen_US
dc.subjectGeneralisationen_US
dc.subjectLevenberg-marquardt algorithmen_US
dc.subjectNeural networksen_US
dc.subjectReservoirsen_US
dc.subjectWater quality modellingen_US
dc.subjectFeedforward networksen_US
dc.subjectComputer scienceen_US
dc.subject.wosComputer science, artificial intelligenceen_US
dc.titleA neural network-based approach for calculating dissolved oxygen profiles in reservoirsen_US
dc.typeArticle
dc.wos.quartileQ4en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections