Prediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques

dc.contributor.authorKarasu, Servet
dc.contributor.authorNacar, Sinan
dc.contributor.authorUzlu, Ergun
dc.contributor.authorYüksek, Ömer
dc.contributor.buuauthorKankal, Murat
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği.tr_TR
dc.contributor.orcid0000-0003-0897-4742tr_TR
dc.contributor.researcheridAAZ-6851-2020tr_TR
dc.contributor.scopusid24471611900tr_TR
dc.date.accessioned2023-02-22T12:49:09Z
dc.date.available2023-02-22T12:49:09Z
dc.date.issued2019-08-09
dc.description.abstractArtificial beach nourishment is one of the most important environmentally friendly coastal protection methods since it protects the aesthetic and recreational values of the beach and increases its protective properties. Therefore, the main aim of the current study is to assess the accuracy of multivariate adaptive regression splines (MARS) in predicting the parameters, namely sediment transport coefficients (K) and the diffusion rate (omega), which affect beach nourishment performance. The performance of the MARS was determined by comparison of the models using exponential, linear, and power regression equations trained by conventional regression analyses (CRA) and the teaching-learning based optimization (TLBO) algorithm. In all models, two different input data obtained from the experimental study were used, one dimensional and one non-dimensional. The results presented that the MARS models gave lower error values than the CRA and TLBO models according to the root mean square error, mean absolute error, and scattering index criteria. When the models were evaluated, it was revealed that dimensional and non-dimensional models gave approximate results. We proved that the dimensional and non-dimensional MARS models can be used to estimate the (K) and (omega) values.en_US
dc.identifier.citationKarasu, S. vd. (2020). "Prediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques". Thalassas, 36(1), 245-260.en_US
dc.identifier.endpage260tr_TR
dc.identifier.issn0212-5919
dc.identifier.issn2366-1674
dc.identifier.issue1tr_TR
dc.identifier.scopus2-s2.0-85073977415tr_TR
dc.identifier.startpage245tr_TR
dc.identifier.urihttps://doi.org/10.1007/s41208-019-00173-z
dc.identifier.urihttps://link.springer.com/article/10.1007/s41208-019-00173-z
dc.identifier.urihttp://hdl.handle.net/11452/31133
dc.identifier.volume36tr_TR
dc.identifier.wos000520610700030
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.collaborationYurt içitr_TR
dc.relation.journalThalassasen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBeach nourishmenten_US
dc.subjectMultivariate adaptive regression splinesen_US
dc.subjectSediment transporten_US
dc.subjectShore protectionen_US
dc.subjectTeaching-learning based optimizationen_US
dc.subjectLearning-based optimizationen_US
dc.subjectSplinesen_US
dc.subjectModelsen_US
dc.subjectEvolutionen_US
dc.subjectClimateen_US
dc.subjectRatesen_US
dc.subjectAreaen_US
dc.subjectSeten_US
dc.subjectMarine & freshwater biologyen_US
dc.subjectOceanographyen_US
dc.subject.scopusBeach Profile; Sandbar; Coasten_US
dc.subject.wosMarine & freshwater biologyen_US
dc.subject.wosOceanographyen_US
dc.titlePrediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniquesen_US
dc.typeArticle
dc.wos.quartileQ4en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: