Yayın: Commutator subgroups of the extended Hecke groups (H)over-bar(lambda(q))
Dosyalar
Tarih
Kurum Yazarları
Bizim, Osman
Cangül, İsmail Naci
Yazarlar
Şahin, Recep
Danışman
Dil
Türü
Yayıncı:
Springer Heidelberg
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
Hecke groups H(lambda(q)) are the discrete subgroups of PSL(2, R) generated by S(z) = -(z + lambda(q))(-1) and T(z) = -1/z. The commutator subgroup of H(lambda(q)), denoted by H'(lambda(q)), is studied in [2]. It was shown that H'(lambda(q)) is a free group of rank q - 1. Here the extended Hecke groups (H) over bar(lambda(q)), obtained by adjoining R-1(z) = 1/(z) over bar to the generators of H(lambda(q)), are considered. The commutator subgroup of (H) over bar(lambda(q)) is shown to be a free product of two finite cyclic groups. Also it is interesting to note that while in the H(lambda(q)) case, the index of H'(lambda(q)) is changed by q, in the case of (H) over bar(lambda(q)), this number is either 4 for q odd or 8 for q even.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Mathematics, Hecke group, Extended hecke group, Commutator subgroup
Alıntı
Şahin, R. vd. (2004). “Commutator subgroups of the extended Hecke groups (H)over-bar(lambda(q))”. Czechoslovak Mathematical Journal, 54(1), 253-259.