Normal dağılımlı istatistiksel manifoldların öteleme yüzeyleri
Date
2024-07-23
Authors
Sevim, Serap
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Lopez (2011) 3 boyutlu hiperbolik uzayın modellerinden birisi olan üst yarı uzay model uzay üzerinde tanımlı olan minimal öteleme yüzeylerin bir karakterizasyonunu vermiştir. İstatistiğin önemli dağılımlardan birisi Normal (Gauss) dağılımlarıdır. Bu dağılıma sahip istatistik modelin, hiperbolik uzayın modellerinden birisi olan Poincare üstyarı-düzlem model ile yakından bir ilişkisi vardır. Bu üst yarı düzlem üzerinde tanımlı olan torsiyonsuz afin koneksiyona göre Riemann metriği paralel değildir. Böylece Lopez (2011) çalışmasından yola çıkarak istatistiksel yapıya sahip olan üç boyutlu üst yarı uzay modelin istatistiksel yüzeyin minimal olma koşulu çalışılmıştır. Bu anlamda literatüre bir istatistiksel manifoldun bir istatistiksel yapıya sahip yüzey örnekleri kazandırılmıştır.
Lopez (2011), one of the models of three-dimensional hyperbolic space, provides a characterization of minimal displacement surfaces defined on the space. One of the significant distributions in statistics is the Normal (Gaussian) distribution. There is a close relationship between this distribution and the Poincaré upper half-plane model, which is one of the models of hyperbolic space. According to the torsion-free affine connection defined on the upper half-plane, the Riemann metric is not parallel. Thus, starting from Lopez's (2011) study, the condition for the statistical surface of a three-dimensional upper half-space model with statistical structure to be minimal has been studied. In this sense, examples of statistical manifolds with a statistical structure have been introduced into the literature.
Lopez (2011), one of the models of three-dimensional hyperbolic space, provides a characterization of minimal displacement surfaces defined on the space. One of the significant distributions in statistics is the Normal (Gaussian) distribution. There is a close relationship between this distribution and the Poincaré upper half-plane model, which is one of the models of hyperbolic space. According to the torsion-free affine connection defined on the upper half-plane, the Riemann metric is not parallel. Thus, starting from Lopez's (2011) study, the condition for the statistical surface of a three-dimensional upper half-space model with statistical structure to be minimal has been studied. In this sense, examples of statistical manifolds with a statistical structure have been introduced into the literature.
Description
Keywords
Hiperbolik uzay, İstatiksel manifoldlar, İstatistiksel altmanifoldlar, Öteleme yüzeyleri, Normal dağılımlar, Poincare üst yarı düzlem modeli, Hyperbolic space, Statistical manifolds, Statistical submanifolds, Translation surfaces, Normal distributions, Poincare upper half model