Akciğer bilgisayarlı tomografi görüntülerinde görüntü işleme uygulamaları ile tümörlerinin tespit edilmesi

dc.contributor.authorÖzdet, Berat
dc.contributor.authorİçer, Semra
dc.date.accessioned2022-07-28T11:04:00Z
dc.date.available2022-07-28T11:04:00Z
dc.date.issued2022-02-23
dc.description.abstractTürkiye’de bir yılda tespit edilen kanser vakalarının büyük çoğunluğu olan akciğer kanseri toplam vaka sayısının yaklaşık %20’sini oluşturmaktadır. En çok ölüm oranını oluşturan akciğer kanseri günümüzde Türkiye ve dünya için önemli bir sağlık sorunu durumundadır. Bu sorunun en önemli kaynağı erken tanısında tedavisi çok daha mümkün olan birçok vakanın erken teşhis edilememesidir. Bu çalışmada Bilgisayarlı Tomografi (BT) görüntüleri kullanılarak tümörlerin ve nodüllerin tespit edilmesi, görüntülerden çıkarılan özelliklerin farklı sınıflandırma algoritmaları ile sınıflandırılması amaçlanmıştır. Kullanılan görüntüler DICOM formatında olup RIDER-Lung CT veri setine ait 26 görüntü üzerinde çalışılmıştır. Tümör bölgesi farklı akciğer segmentasyon yöntemleri kullanılarak elde edilmiş, tümöre ait pek çok özellik hesaplanmıştır. Hesaplanan özelliklerden istatistiksel olarak anlamlı (p<0,05) olanları sınıflandırma için kullanılmıştır. Anlamlı özellikler Karar ağaçları (Decision Trees) algoritmaları, Destek Vektörü Makinesi (SVM), Yakın Komşuluk Sınıflandırması (KNN) sınıflandırıcı algoritmaları ve Diskriminant analizi ile sınıflandırılarak sonuçlar karşılaştırılmıştır. Bu algoritmaların doğruluk oranları karar ağaçları %97, SVM %96,6, KNN %93,6, Diskriminant analizi %97 olarak sonuç vermiştir. Yöntemler hassasiyet ve duyarlılık olarak karşılaştırıldığında ise her iki nicelik Kuadratik SVM ve Diskriminat analizinde % 95 üstüdür. Bu karşılaştırmalar sonucunda yöntemlerin yüksek başarı oranları ile umut verici olarak gelecek çalışmalarda kullanılabileceği görülmüştür.
dc.description.abstractLung cancer, which is the majority of cancer cases detected in a year in Turkey, constitutes approximately 20% of the total number of cases. Lung cancer, which constitutes the highest mortality rate, is an important health problem for Turkey and the world today. The most important source of this problem is that many cases that are much more possible to treat in early diagnosis cannot be diagnosed early. In this study, it is aimed to detect tumors and nodules using Computed Tomography (CT) images, and to classify features extracted from images with different classification algorithms. The images used are in DICOM format and 26 images of the RIDER-Lung CT data set were studied. The tumor region was obtained using different lung segmentation methods, and many features of the tumor were calculated. Statistically significant (p<0.05) calculated features were used for classification. Significant features were classified by Decision Trees algorithms, Support Vector Machine (SVM), Close Neighborhood Classification (KNN) classifier algorithms and Discriminant Analysis and the results were compared. The accuracy rates of these algorithms were 97% for decision trees, 96.6% for SVM, 93.6% for KNN, and 97% for Discriminant analysis. When the methods are compared in terms of sensitivity and sensitivity, both quantities are above 95% in Quadratic SVM and Discriminate analysis. As a result of these comparisons, it has been seen that the methods can be used in future studies with high success rates.
dc.identifier.citationÖzdet, B. ve İçer, S. (2022). ''Akciğer bilgisayarlı tomografi görüntülerinde görüntü işleme uygulamaları ile tümörlerinin tespit edilmesi''. Uludağ Üniversitesi Mühendislik Dergisi, 27(1), 135-150.
dc.identifier.endpage150
dc.identifier.issn2148-4147
dc.identifier.issn2148-4155
dc.identifier.issue1
dc.identifier.startpage135
dc.identifier.urihttps://dergipark.org.tr/tr/download/article-file/1805704
dc.identifier.urihttps://doi.org/10.17482/uumfd.947619
dc.identifier.urihttp://hdl.handle.net/11452/28109
dc.identifier.volume27
dc.language.isotr
dc.publisherBursa Uludağ Üniversitesi
dc.relation.journalUludağ Üniversitesi Mühendislik Dergisi / Uludağ University Journal of The Faculty of Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAkciğer kanseri
dc.subjectAkciğer segmentasyonu
dc.subjectGörüntü işleme
dc.subjectMakinalı öğrenme
dc.subjectLung cancer
dc.subjectLung segmentation
dc.subjectImage processing
dc.subjectMachine learning
dc.titleAkciğer bilgisayarlı tomografi görüntülerinde görüntü işleme uygulamaları ile tümörlerinin tespit edilmesi
dc.title.alternativeDetermination of tumors by image processing applications in lung computerized tomography images
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
27_1_10.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: