Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions
dc.contributor.buuauthor | Yıldırım, Kenan | |
dc.contributor.buuauthor | Öğüt, Hamdi | |
dc.contributor.buuauthor | Ulucay, Yusuf | |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Mimarlık Fakültesi/Tekstil Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-1640-6035 | tr_TR |
dc.contributor.researcherid | HKM-7750-2023 | tr_TR |
dc.contributor.scopusid | 30767899000 | tr_TR |
dc.contributor.scopusid | 55883276800 | tr_TR |
dc.contributor.scopusid | 6601918936 | tr_TR |
dc.date.accessioned | 2023-03-06T06:18:22Z | |
dc.date.available | 2023-03-06T06:18:22Z | |
dc.date.issued | 2017 | |
dc.description.abstract | In the manufacture of yarn, predicting the effect of changing production conditions is vital to reducing defects in the end product. This study compares, for the first time, non-linear regression and artificial neural network (ANN) models in predicting 10 yarn properties shaped by the influence of winding speed, quenching air temperature and/or quenching air speed during production. A multilayer perceptron ANN model was created by training 81 patterns using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The hyperbolic tangent, or TanH, activation function and logistic activation functions were used for the hidden and output layers respectively. Results showed that the ANN approach exhibited a greater prediction capability over the non-linear regression method. ANN simultaneously predicted all of the 10 final properties of a yarn; tensile strength, tensile strain, draw force, crystallinity ratio, dye uptake based on the colour strengths (K/S), brightness, boiling shrinkage and yarn evenness, more accurately than the non-linear regression model (R-2 = 0.97 vs. R-2 = 0.92). These results lend support to the idea that the ANN analysis combined with optimization can be used successfully to prevent production defects by fine tuning the production environment. | en_US |
dc.description.sponsorship | Textile Company - KORTEKS | en_US |
dc.identifier.citation | Yıldırım, K. vd. (2017). ''Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions''. Journal of Engineered Fibers and Fabrics, 12(3), 7-16. | en_US |
dc.identifier.endpage | 16 | tr_TR |
dc.identifier.issn | 1558-9250 | |
dc.identifier.issue | 3 | tr_TR |
dc.identifier.scopus | 2-s2.0-85028661191 | tr_TR |
dc.identifier.startpage | 7 | tr_TR |
dc.identifier.uri | https://doi.org/10.1177/15589250170120 | |
dc.identifier.uri | https://journals.sagepub.com/doi/10.1177/155892501701200302 | |
dc.identifier.uri | http://hdl.handle.net/11452/31347 | |
dc.identifier.volume | 12 | tr_TR |
dc.identifier.wos | 000417360400002 | tr_TR |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sage Puplications | en_US |
dc.relation.journal | Journal of Engineered Fibers and Fabrics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Materials science | en_US |
dc.subject | Parameters | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Optimization | en_US |
dc.subject | Yarn | en_US |
dc.subject | Defects | en_US |
dc.subject | Forecasts | en_US |
dc.subject | Manufacture | en_US |
dc.subject | Quenching | en_US |
dc.subject | Chemical activation | en_US |
dc.subject | Defects | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Hyperbolic functions | en_US |
dc.subject | Linear regression | en_US |
dc.subject | Manufacture | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Nonlinear programming | en_US |
dc.subject | Tensile strain | en_US |
dc.subject | Wool | en_US |
dc.subject | Artificial neural network models | en_US |
dc.subject | Non-linear regression | en_US |
dc.subject | Non-linear regression method | en_US |
dc.subject | Nonlinear regression models | en_US |
dc.subject | Prediction capability | en_US |
dc.subject | Production environments | en_US |
dc.subject | Regression analysis | en_US |
dc.subject.scopus | Yarns; Cotton Fibers; Weft | en_US |
dc.subject.wos | Materials science, textiles | en_US |
dc.title | Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions | en_US |
dc.type | Article | |
dc.wos.quartile | Q3 | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: