Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions

dc.contributor.buuauthorYıldırım, Kenan
dc.contributor.buuauthorÖğüt, Hamdi
dc.contributor.buuauthorUlucay, Yusuf
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Mimarlık Fakültesi/Tekstil Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-1640-6035tr_TR
dc.contributor.researcheridHKM-7750-2023tr_TR
dc.contributor.scopusid30767899000tr_TR
dc.contributor.scopusid55883276800tr_TR
dc.contributor.scopusid6601918936tr_TR
dc.date.accessioned2023-03-06T06:18:22Z
dc.date.available2023-03-06T06:18:22Z
dc.date.issued2017
dc.description.abstractIn the manufacture of yarn, predicting the effect of changing production conditions is vital to reducing defects in the end product. This study compares, for the first time, non-linear regression and artificial neural network (ANN) models in predicting 10 yarn properties shaped by the influence of winding speed, quenching air temperature and/or quenching air speed during production. A multilayer perceptron ANN model was created by training 81 patterns using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The hyperbolic tangent, or TanH, activation function and logistic activation functions were used for the hidden and output layers respectively. Results showed that the ANN approach exhibited a greater prediction capability over the non-linear regression method. ANN simultaneously predicted all of the 10 final properties of a yarn; tensile strength, tensile strain, draw force, crystallinity ratio, dye uptake based on the colour strengths (K/S), brightness, boiling shrinkage and yarn evenness, more accurately than the non-linear regression model (R-2 = 0.97 vs. R-2 = 0.92). These results lend support to the idea that the ANN analysis combined with optimization can be used successfully to prevent production defects by fine tuning the production environment.en_US
dc.description.sponsorshipTextile Company - KORTEKSen_US
dc.identifier.citationYıldırım, K. vd. (2017). ''Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions''. Journal of Engineered Fibers and Fabrics, 12(3), 7-16.en_US
dc.identifier.endpage16tr_TR
dc.identifier.issn1558-9250
dc.identifier.issue3tr_TR
dc.identifier.scopus2-s2.0-85028661191tr_TR
dc.identifier.startpage7tr_TR
dc.identifier.urihttps://doi.org/10.1177/15589250170120
dc.identifier.urihttps://journals.sagepub.com/doi/10.1177/155892501701200302
dc.identifier.urihttp://hdl.handle.net/11452/31347
dc.identifier.volume12tr_TR
dc.identifier.wos000417360400002tr_TR
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSage Puplicationsen_US
dc.relation.journalJournal of Engineered Fibers and Fabricsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMaterials scienceen_US
dc.subjectParametersen_US
dc.subjectAlgorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectNeural networksen_US
dc.subjectOptimizationen_US
dc.subjectYarnen_US
dc.subjectDefectsen_US
dc.subjectForecastsen_US
dc.subjectManufactureen_US
dc.subjectQuenchingen_US
dc.subjectChemical activationen_US
dc.subjectDefectsen_US
dc.subjectForecastingen_US
dc.subjectHyperbolic functionsen_US
dc.subjectLinear regressionen_US
dc.subjectManufactureen_US
dc.subjectNeural networksen_US
dc.subjectNonlinear programmingen_US
dc.subjectTensile strainen_US
dc.subjectWoolen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectNon-linear regressionen_US
dc.subjectNon-linear regression methoden_US
dc.subjectNonlinear regression modelsen_US
dc.subjectPrediction capabilityen_US
dc.subjectProduction environmentsen_US
dc.subjectRegression analysisen_US
dc.subject.scopusYarns; Cotton Fibers; Weften_US
dc.subject.wosMaterials science, textilesen_US
dc.titleComparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditionsen_US
dc.typeArticle
dc.wos.quartileQ3en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: