Publication:
Classification of olives using FT-NIR spectroscopy, neural networks and statistical classifiers

dc.contributor.authorKavdır, İsmail
dc.contributor.authorBüyükcan, Burak M.
dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.researcheridR-8053-2016
dc.contributor.scopusid15848202900
dc.date.accessioned2023-11-01T08:22:24Z
dc.date.available2023-11-01T08:22:24Z
dc.date.issued2018-12
dc.description.abstractGreen olives (Olea europaea L. cv. Ayvalik') were classified based on their surface features such as existence of bruise and fly-defect using two NIR spectrometer readings of reflectance and transmittance, and classifiers such as artificial neural networks (ANN) and statistical (Ident and Cluster). Spectral readings were performed in the ranges of 780-2500 and 800-1725nm for reflectance and transmittance modes, respectively. Original spectral readings were used as input features to the classifiers. Diameter correction was applied on reflectance spectra used in ANN classifier expecting improved classification results. ANN classifier performed better in general compared to statistical classifiers. Classification performance in detecting bruised olives using diameter corrected reflectance features and ANN classifier was 99% while it was 98% for Ident and Cluster classification approaches using regular reflectance features. Classification between solid and fly-defected olives was performed with success rates of 93% using reflectance features and 58% using transmittance features with ANN classifier while statistical classifiers of Ident and Cluster performed between 52 and 78% success rates using the same spectral readings. ANN classifier resulted 92% classification success for the classification application considering three output classes of solid, bruised and fly-defected olives using reflectance features while it performed 57.3% success rate using transmittance features.
dc.identifier.citationKavdir, İ. vd. (2018). ''Classification of olives using FT-NIR spectroscopy, neural networks and statistical classifiers''. Journal of Food Measurement and Characterization, 12(4), 2493-2502.
dc.identifier.endpage2502
dc.identifier.issn2193-4126
dc.identifier.issn2193-4134
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85048813636
dc.identifier.startpage2493
dc.identifier.urihttps://doi.org/10.1007/s11694-018-9866-5
dc.identifier.urihttps://link.springer.com/article/10.1007/s11694-018-9866-5
dc.identifier.urihttp://hdl.handle.net/11452/34730
dc.identifier.volume12
dc.identifier.wos000452363700026
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt içi
dc.relation.journalJournal of Food Measurement and Characterization
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak104O555
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFood science & technology
dc.subjectFT-NIR spectroscopy
dc.subjectOlive
dc.subjectBruise
dc.subjectFly-defect
dc.subjectNeural networks
dc.subjectStatistical classifiers
dc.subjectNear-infrared-spectroscopy
dc.subjectBruise detection
dc.subjectDamage
dc.subjectInfrared devices
dc.subjectNeural networks
dc.subjectReflection
dc.subjectSpectrometers
dc.subjectStatistics
dc.subjectBruise
dc.subjectClassification approach
dc.subjectClassification performance
dc.subjectClassification results
dc.subjectFT-NIR spectroscopy
dc.subjectOlive
dc.subjectReflectance spectrum
dc.subjectStatistical classifier
dc.subjectClassification (of information)
dc.subject.scopusHyperspectral Imaging; Total Volatile Basic Nitrogen; Fruit
dc.subject.wosFood science & technology
dc.titleClassification of olives using FT-NIR spectroscopy, neural networks and statistical classifiers
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: