Yayın:
Some special cases of the minimal polynomial of 2cos(pi/q) over q

Placeholder

Tarih

Akademik Birimler

Kurum Yazarları

Togan, Müge
Özgür, Birsen
Cangül, İsmail Naci

Yazarlar

Simos, T. E.

Danışman

Dil

Yayıncı:

Amer Inst Pyhsics

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

The number lambda(q) - 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups of the first kind, and in the study of regular polyhedra. Here we obtained some results on the values of the minimal polynomial of this number in modulo prime p. This results help in the calculation of the congruence subgroups of the Hecke groups which is an important problem in discrete group theory.

Açıklama

Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.

Kaynak:

Anahtar Kelimeler:

Konusu

Mathematics, Hecke groups, Roots of unity, Chebycheff polynomials, Minimal polynomial

Alıntı

Togan, M. vd. (2011). "Some special cases of the minimal polynomial of 2cos(pi/q) over q". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 375-377.

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads