Publication:
Numerical analysis of choked converging nozzle flows with surface roughness and heat flux conditions

dc.contributor.buuauthorÖzalp, A. Alper
dc.contributor.departmentMühendislik Mimarlık Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0002-4976-9027
dc.contributor.researcheridABI-6888-2020
dc.contributor.scopusid6506131689
dc.date.accessioned2021-12-08T05:30:59Z
dc.date.available2021-12-08T05:30:59Z
dc.date.issued2006
dc.description.abstractChoked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are conducted with sufficiently wide ranges of covergence half angle, surface roughness and heat flux conditions. Numerical findings show that inlet Mach and Nusselt numbers decrease up to 23.1% and 15.8% with surface heat flux and by 15.13% and 4.8% due to surface roughness. Considering each convergence half angle case individually results in a linear relation between nozzle discharge coefficients and exit Reynolds numbers with similar slopes. Heat flux implementation, by decreasing the shear stress values, lowers the risks due to wear hazards at upstream sections of flow walls; however the final 10% downstream nozzle portion is determined to be quite critical, where shear stress attains the highest magnitudes. Heat transfer rates are seen to increase in the streamwise direction LIP to 2.7 times; however high convergence half angles, heat flux and surface roughness conditions lower inlet Nusselt numbers by 70%, 15.8% and 4.8% respectively.
dc.identifier.citationÖzalp, A. A. (2006). ''Numerical analysis of choked converging nozzle flows with surface roughness and heat flux conditions''. Sadhana - Academy Proceedings in Engineering Sciences, 31(1), 31-46.
dc.identifier.endpage46
dc.identifier.issn0256-2499
dc.identifier.issue1
dc.identifier.scopus2-s2.0-33744966128
dc.identifier.startpage31
dc.identifier.urihttps://doi.org/10.1007/BF02703798
dc.identifier.urihttps://link.springer.com/article/10.1007%2FBF02703798
dc.identifier.urihttp://hdl.handle.net/11452/23052
dc.identifier.volume31
dc.identifier.wos000236008400004
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer India
dc.relation.journalSadhana - Academy Proceedings in Engineering Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEngineering
dc.subjectMatrix algebra
dc.subjectTransfer matrix
dc.subjectNumerical analysis
dc.subjectSurface wear hazard
dc.subjectNusselt number
dc.subjectNozzle energy transport capability
dc.subjectSurface roughness
dc.subjectDischarge coefficient
dc.subjectSonic nozzles
dc.subjectCoefficients
dc.subjectRocket
dc.subjectMathematical models
dc.subjectHeat transfer
dc.subjectConvergence of numerical methods
dc.subjectHeat flux
dc.subject.scopusSonic Nozzles; Discharge Coefficient; Critical Flow
dc.subject.wosEngineering, multidisciplinary
dc.titleNumerical analysis of choked converging nozzle flows with surface roughness and heat flux conditions
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Mimarlık Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Özalp_2006.pdf
Size:
199.46 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: