Yayın: On 3-dimensional generalized (kappa, mu)-contact metric manifolds
Tarih
Kurum Yazarları
Arslan, Kadri
Murathan, Cengizhan
Yazarlar
Shaikh, Absos Ali
Bhaishya, K. K.
Danışman
Dil
Türü
Yayıncı:
Balkan Soc Geometers
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
In the present study, we considered 3-dimensional generalized (kappa, mu)-contact metric manifolds. We proved that a 3-dimensional generalized (kappa, mu)-contact metric manifold is not locally phi-symmetric in the sense of Takahashi. However such a manifold is locally phi-symmetric provided that kappa and mu are constants. Also it is shown that if a 3-dimensional generalized (kappa, mu) -contact metric manifold is Ricci-symmetric, then it is a (kappa, mu)-contact metric manifold. Further we investigated certain conditions under which a generalized (kappa, mu)-contact metric manifold reduces to a (kappa, mu)-contact metric manifold. Then we obtain several necessary and sufficient conditions for the Ricci tensor of a generalized (kappa, mu)-contact metric manifold to be eta-parallel. Finally, we studied Ricci-semisymmetric generalized (kappa, mu)-contact metric manifolds and it is proved that such a manifold is either flat or a Sasakian manifold.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Mathematics, η-parallel Ricci tensor, Generalized (κ, μ)-contact manifolds, Locally φ-symmetric, Sasakian manifold
Alıntı
Shaikh, A. A. vd. (2007). "On 3-dimensional generalized (kappa, mu)-contact metric manifolds". Balkan Journal of Geometry and its Applications, 12(1), 122-134.