Innovative and polygonal trend analyses applications for rainfall data in Vietnam

dc.contributor.authorŞan, Murat
dc.contributor.authorLinh, Nguyen Thi Thuy
dc.contributor.authorPham, Quoc Bao
dc.contributor.buuauthorKankal, Murat
dc.contributor.buuauthorAkçay, Fatma
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.
dc.contributor.orcid0000-0003-0897-4742tr_TR
dc.contributor.researcheridAAZ-6851-2020tr_TR
dc.contributor.researcheridCBG-3616-2022tr_TR
dc.contributor.scopusid24471611900tr_TR
dc.contributor.scopusid57222226657tr_TR
dc.date.accessioned2024-01-11T08:23:06Z
dc.date.available2024-01-11T08:23:06Z
dc.date.issued2021-02-16
dc.description.abstractIt is a known fact that the size, frequency, and spatial variability of hydrometeorological variables will irregularly increase under the impact of climate change. Among the hydrometeorological variables, rainfall is one of the most important. Trend analysis is one of the most effective methods of observing the effects of climate change on rainfall. Recently, new graphical methods have been proposed as an alternative to classical trend analysis methods. Innovative Polygon Trend Analysis (IPTA), which evolved from Innovative Trend Analysis (ITA), is currently one of the proposed methods and it does not contain any assumptions. The aim of this study is to compare IPTA, ITA with the Significance Test and Mann-Kendall (MK) methods. To achieve this, the monthly total rainfall trends of 15 stations in the Vu Gia-Thu Bon River Basin (VGTBRB) of Vietnam have been examined for the period 1979-2016. The analyses show that rainfall tends to increase (decrease) in March (June) at nearly all stations. IPTA and ITA with the Significance Test are more sensitive than MK in determining the trends. While trends were detected in approximately 90% of all months in IPTA and ITA with the Significance Test, this rate was only 23% in the MK test. Although the arithmetic mean graphs in the 1-year hydrometeorological cycle are considerably regular at almost all stations, their standard deviations are relatively irregular. The most critical month for trend transitions between consecutive months for all the stations is October, which has an average trend slope of -1.35 and a trend slope ranging from -3.98 to -0.21, which shows a decreasing trend.en_US
dc.identifier.citationSan, M. vd. (2021). "Innovative and polygonal trend analyses applications for rainfall data in Vietnam". Theoretical and Applied Climatology, 144(3-4), 809-822.en_US
dc.identifier.doihttps://doi.org/10.1007/s00704-021-03574-4
dc.identifier.eissn1434-4483
dc.identifier.endpage822tr_TR
dc.identifier.issn0177-798X
dc.identifier.issue3-4tr_TR
dc.identifier.scopus2-s2.0-85101941818tr_TR
dc.identifier.startpage809tr_TR
dc.identifier.urihttps://link.springer.com/article/10.1007/s00704-021-03574-4
dc.identifier.urihttps://hdl.handle.net/11452/38956
dc.identifier.volume144tr_TR
dc.identifier.wos000623702000001
dc.indexed.pubmedPubMeden_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.journalTheoretical and Applied Climatologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraphical trend methodsen_US
dc.subjectInnovative trenden_US
dc.subjectMonthly rainfallen_US
dc.subjectPolygon trenden_US
dc.subjectVietnamen_US
dc.subjectLong-term persistenceen_US
dc.subjectTime-seriesen_US
dc.subjectHomogeneityen_US
dc.subjectIdentificationen_US
dc.subjectPrecipitationen_US
dc.subjectMethodologyen_US
dc.subjectTemperatureen_US
dc.subjectBasınen_US
dc.subjectClimate changeen_US
dc.subjectClimate effecten_US
dc.subjectGraphical methoden_US
dc.subjectPrecipitation assessmenten_US
dc.subjectPrecipitation intensityen_US
dc.subjectRainfallen_US
dc.subjectSeasonal variationen_US
dc.subjectTrend analysisen_US
dc.subjectMeteorology & atmospheric sciencesen_US
dc.subject.scopusChina; Penman-Monteith Equation; Trend Analysisen_US
dc.subject.wosMeteorology & atmospheric sciencesen_US
dc.titleInnovative and polygonal trend analyses applications for rainfall data in Vietnamen_US
dc.typeArticleen_US
dc.wos.quartileQ3 (Meteorology & atmospheric sciences)en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections