Asansör sistemlerinde veri iletimi için çok atlamalı kablosuz ağ tasarımı ve performans analizi
Date
2019-10-22
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Kablosuz teknolojiyi kullanarak asansörün kat bileşenlerini sürmek için yapılan araştırmalar devam etmektedir. Asansör şirketleri, geleneksel yaklaşımlarla ilgili sorunlardan kaçınmak için yeni yollar bulma peşindedir. Ana hedefler kullanılan kabloların sayısını, asansör kurulum süresini ve sorun giderme süresini azaltmak ve kullanıcılara verilen servis kalitesini arttırmaktır. Bu tez çalışmasında, kontrol paneli ile kat bileşenlerinin arasındaki mevcut en yaygın kablolu ve kablosuz veri iletim teknikleri karşılaştırmalı olarak değerlendirilmiş, hepsinin olumlu ve olumsuz yönleri belirlenmiştir. Bu değerlendirme ışığında, enerji hasadı teknolojisinin ve Wireless Short Packet (WSP) protokolünün kat bileşenlerini sürmekte uygulanabilirliği analiz edilmiş ve bu analizden yola çıkarak iki ağ tasarlanmıştır. Birincisi alçak ve orta yükseklikteki binalar için geri bildirimsiz çok atlamalı kablosuz bir ağdır. İkincisi yüksek binalara uygun hibrit kablolu-kablosuz bir ağdır. Önerilen iki ağ mimarisi için ihtiyaç duyulacak cihazlar satın alınarak deney düzeneği kurulmuş ve bu düzenek üzerinde performans testleri gerçekleştirilmiştir. WSP protokolünü kullanan TCM320 modülünün testinde, modülün hatasız çalışabildiği maksimum telegram yoğunluğu 75 telegram/s olarak bulunmuştur. Bu da 13,33 ms'lik telegram penceresine karşı gelmektedir. Modülün gönderdiği işaretin, testin yapıldığı binada, 6 kata kadar nüfuz edebildiği ispatlanmıştır. Birinci ağda, 13 baytlık telegramlarla ağın atlama süresinin (t_a) en iyi durumda 16,1 ms ve en kötü durumda 56,1 ms olduğu tespit edilmiştir. Çağrı butonunun tepki süresine (c_t) göre en iyi ve en kötü durumda hizmet edilebilecek maksimum kat sayısı (N) da belirlenmiştir. Sırayla c_t 50, 100, 200, 300, 400, 500, 1000 ms olduğunda N en iyi durumda 6, 12, 24, 37, 49, 62, 124 ve en kötü durumda 1, 3, 7, 10, 14, 17, 35'tir. İkinci ağda CANbus teknolojisiyle TCM320 kullanılmıştır. Bu ağda mesaj iletiminin süresinin az ve sabit olması ağın yüksek binalarda uygulanmasına imkân sağlamaktadır. N değeri, CANbus'ın normal modundayken 325 ve TJA1055T kontrolörüyle CANbus hata-tolerans modundayken 295 olarak hesaplanmıştır.
Many researches have been conducted to utilize wireless technology in order to control the floor fixtures of elevators. Elevator companies are trying to discover new ways to avoid the problems related to the traditional approaches. The main goals essentially are decreasing the number of cables used, the elevator installation period, the time of troubleshooting and increasing the service quality provided to users. In this thesis, the most common wired and wireless data transmission techniques between the control panel and the floor fixtures have been evaluated, and their positive and negative effects have been determined. In the light of this evaluation, the feasibility of using energy harvesting technology and Wireless Short Packet (WSP) protocol to control the floor fixtures has been analyzed and, as a result, two networks have been designed. The first one is a multi-hop wireless network for low-rise and medium-rise buildings. The second one is a hybrid wired-wireless network designed for high-rise buildings. For the performance test of the two networks, the required equipment has been purchased and 3 experimental setups have been built. While testing the TCM320 module, which uses the WSP protocol, the maximum telegram intensity the module can operate in without errors has been found to be 75 telegram/s. This corresponds to a 13.33 ms telegram window. The signal of the module has been proven to penetrate up to 6 floors in the building where the test has been conducted. In the first network, when using telegrams with 13-byte length, in the best case, hop time (t_a) has been determined as 16.1 ms, while in the worst case it has been found as 56.1 ms. The maximum number of floors (N) that can be served in both cases has been determined according to the call button response time (c_t). For c_t values of 50, 100, 200, 300, 400, 500, 1000 ms, in the best case, N has been computed as 6, 12, 24, 37, 49, 62, 124, and in the worst case, N has been found as 1, 3, 7, 10, 14, 17, 35, respectively. In the second network, CANbus has been used with TCM320 modules. In this network, short and constant data transmission period allows the network to be implemented in high-rise buildings. N value has been computed as 325 when CANbus is in normal mode, and it has been computed as 295 when the TJA1055T controller is in CANbus fault-tolerance mode.
Many researches have been conducted to utilize wireless technology in order to control the floor fixtures of elevators. Elevator companies are trying to discover new ways to avoid the problems related to the traditional approaches. The main goals essentially are decreasing the number of cables used, the elevator installation period, the time of troubleshooting and increasing the service quality provided to users. In this thesis, the most common wired and wireless data transmission techniques between the control panel and the floor fixtures have been evaluated, and their positive and negative effects have been determined. In the light of this evaluation, the feasibility of using energy harvesting technology and Wireless Short Packet (WSP) protocol to control the floor fixtures has been analyzed and, as a result, two networks have been designed. The first one is a multi-hop wireless network for low-rise and medium-rise buildings. The second one is a hybrid wired-wireless network designed for high-rise buildings. For the performance test of the two networks, the required equipment has been purchased and 3 experimental setups have been built. While testing the TCM320 module, which uses the WSP protocol, the maximum telegram intensity the module can operate in without errors has been found to be 75 telegram/s. This corresponds to a 13.33 ms telegram window. The signal of the module has been proven to penetrate up to 6 floors in the building where the test has been conducted. In the first network, when using telegrams with 13-byte length, in the best case, hop time (t_a) has been determined as 16.1 ms, while in the worst case it has been found as 56.1 ms. The maximum number of floors (N) that can be served in both cases has been determined according to the call button response time (c_t). For c_t values of 50, 100, 200, 300, 400, 500, 1000 ms, in the best case, N has been computed as 6, 12, 24, 37, 49, 62, 124, and in the worst case, N has been found as 1, 3, 7, 10, 14, 17, 35, respectively. In the second network, CANbus has been used with TCM320 modules. In this network, short and constant data transmission period allows the network to be implemented in high-rise buildings. N value has been computed as 325 when CANbus is in normal mode, and it has been computed as 295 when the TJA1055T controller is in CANbus fault-tolerance mode.
Description
Keywords
Asansör, Veri iletimi, Çok atlamalı ağ, WSP, CANbus, Enerji hasadı, Kablosuz iletişim, İletişim sistemi, Elevator, Data transmission, Multi-hop network, Energy harvesting, Wireless communication, Communication system
Citation
Lajin, M.M. (2019). Asansör sistemlerinde veri iletimi için çok atlamalı kablosuz ağ tasarımı ve performans analizi. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü.