Yayın:
Predictive modeling and chemometric optimization in natural dyeing systems: An analytical case study of wool dyeing with Melissa officinalis l

dc.contributor.authorSafapour, Siyamak
dc.contributor.authorToprak-Çavdur, Tuba
dc.contributor.authorÇavdur, Fatih
dc.contributor.authorRather, Luqman Jameel
dc.contributor.authorAssiri, Mohammed A.
dc.contributor.authorDar, Qaiser Farooq
dc.contributor.authorLi, Qing
dc.contributor.buuauthorTOPRAK ÇAVDUR, TUBA
dc.contributor.buuauthorÇAVDUR, FATİH
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentTekstil Mühendisliği Bölümü
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridB-5740-2017
dc.contributor.researcheridAAG-9471-2021
dc.date.accessioned2025-11-06T16:57:11Z
dc.date.issued2025-09-09
dc.description.abstractThis study introduces a robust chemometric framework that integrates predictive modeling and multi-criteria decision-making for the analytical assessment of natural dye systems. Using Melissa officinalis L. as a model extract, we demonstrate an eco-conscious dyeing application on wool yarns evaluated through objective colorimetric parameters. A total of 40 treatment combinations involving bio- and metal mordants were assessed. The Weighted Aggregated Sum Product Assessment (WASPAS) method was used to rank treatments based on L*, a*, and b* values, identifying the Cu-GA combination as optimal with a composite score of 1.71. To model dyeing behavior, we implemented a feedforward Artificial Neural Network (ANN) trained on 3720 K/S data points across treatment and wavelength conditions. The ANN achieved high predictive accuracy (R2 = 94.13-95.28; MSE = 1.37-1.95) using Levenberg-Marquardt backpropagation. This model enabled the interpolation of unmeasured color strength values, enhancing reproducibility and reducing experimental load. UV protection was also evaluated, with the Cu-GA treatment achieving a maximum UPF of 128.43. Enhanced wash, rub, and light fastness in Fe and Cu mordanted samples were explained via coordination bonding between dye chromophores and fiber. These results demonstrate how machine learning and decision science tools can generalize analytical predictions in dye systems. The integrated ANN-WASPAS framework offers a transferable analytical strategy applicable to broader natural product formulations, quality control, and sustainable materials research.
dc.identifier.doi10.1016/j.microc.2025.115200
dc.identifier.issn0026-265X
dc.identifier.scopus2-s2.0-105015215215
dc.identifier.urihttps://doi.org/10.1016/j.microc.2025.115200
dc.identifier.urihttps://hdl.handle.net/11452/56706
dc.identifier.volume218
dc.identifier.wos001568890200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalMicrochemical journal
dc.subjectSustainability
dc.subjectArtificial intelligence
dc.subjectArtificial neural networks
dc.subjectWASPAS
dc.subjectOptimization
dc.subjectEstimation
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectChemistry, analytical
dc.subjectChemistry
dc.titlePredictive modeling and chemometric optimization in natural dyeing systems: An analytical case study of wool dyeing with Melissa officinalis l
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Tekstil Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationae9b9c40-4ac0-4531-8268-fdd912abfd51
relation.isAuthorOfPublication488d40a8-9d9d-4814-89f3-0a6433d547cc
relation.isAuthorOfPublication.latestForDiscoveryae9b9c40-4ac0-4531-8268-fdd912abfd51

Dosyalar