Yayın:
Performance analysis of disease diagnostic system using iomt and real-time data analytics

dc.contributor.authorYıldırım, Emre
dc.contributor.authorÇalhan, Ali
dc.contributor.authorCicioğlu, Murtaza
dc.contributor.buuauthorCİCİOĞLU, MURTAZA
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0000-0002-5657-7402
dc.contributor.researcheridAAL-5004-2020
dc.date.accessioned2024-09-30T10:41:36Z
dc.date.available2024-09-30T10:41:36Z
dc.date.issued2022-03-10
dc.description.abstractIn this article, the Internet of Medical Things (IoMT) framework based on Apache Spark big data processing technology is proposed for real-time analysis of health data obtained from wireless body area networks (WBANs), which is one of the most important components of IoMT. The proposed framework consists of four layers: data source, data collection, data analytics and visualization. In addition, the proposed IoMT framework is presented with two different disease prediction scenarios, diabetes and heart disease. Diabetes and heart disease prediction processes are carried out using the random forest (RF), logistic regression (LR) and support vector machine (SVM) algorithms belonging to the Apache Spark machine learning library (MLlib). The analysis of health data generated in WBANs takes place in real-time in the Apache Spark-based data analytics layer. In this study, the performances of MLlib algorithms in the real-time model developed for heart and diabetes disease are examined. The SVM algorithm with an accuracy rate of 93.33% for heart disease and the LR algorithm with an accuracy rate of 78.89% for diabetes are found to provide the best performances.
dc.identifier.doi10.1002/cpe.6916
dc.identifier.eissn1532-0634
dc.identifier.issn1532-0626
dc.identifier.issue13
dc.identifier.scopus2-s2.0-85126002913
dc.identifier.urihttps://doi.org/10.1002/cpe.6916
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/cpe.6916
dc.identifier.urihttps://hdl.handle.net/11452/45496
dc.identifier.volume34
dc.identifier.wos000766946700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalConcurrency and Computation-practice & Experience
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMonitoring-system
dc.subjectApache spark
dc.subjectIomt
dc.subjectWbans
dc.subjectData analytics
dc.subjectMachine learning
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, software engineering
dc.subjectComputer science, theory & methods
dc.subjectComputer science
dc.titlePerformance analysis of disease diagnostic system using iomt and real-time data analytics
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentBilgisayar Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication44bc36d2-0d2c-4f60-aed7-11bf3e17b449
relation.isAuthorOfPublication.latestForDiscovery44bc36d2-0d2c-4f60-aed7-11bf3e17b449

Dosyalar