Yayın:
Offline identification of a laboratory incubator

dc.contributor.authorMantar, Süleyman
dc.contributor.authorYılmaz, Ersen
dc.contributor.buuauthorMantar, Süleyman
dc.contributor.buuauthorYILMAZ, ERSEN
dc.contributor.departmentElektrik-Elektronik Mühendisliği Bölümü
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.orcid0000-0002-0552-6066
dc.contributor.researcheridKMA-3558-2024
dc.contributor.researcheridKLN-0834-2024
dc.date.accessioned2025-01-31T12:57:51Z
dc.date.available2025-01-31T12:57:51Z
dc.date.issued2024-04-01
dc.description.abstractLaboratory incubators are used to maintain and cultivate microbial and cell cultures. In order to ensure suitable growing conditions and to avoid cell injuries and fast rise and settling times, minimum overshoot and undershoot performance indexes should be considered in the controller design for incubators. Therefore, it is important to build proper models to evaluate the performance of the controllers before implementation. In this study, we propose an approach to build a model for a laboratory incubator. In this approach, the incubator is considered a linear time-invariant single-input, single-output system. Four different model structures, namely auto-regressive exogenous, auto-regressive moving average exogenous, output error and Box-Jenkins, are applied for modeling the system. The parameters of the model structures are estimated by using prediction error methods. The performances of the model structures are evaluated in terms of mean squared error, mean absolute error and goodness of fit. Additionally, residue analysis including auto-correlation and cross-correlation plots is provided. Experiments are carried out in two scenarios. In the first scenario, the identification dataset is collected from the unit-step response, while in the second scenario, it is collected from the pseudorandom binary sequence response. The experimental study shows that the Box-Jenkins model achieves an over 90% fit percentage for the first scenario and an over 95% fit percentage for the second scenario. Based on the experimental results, it is concluded that the Box-Jenkins model can be used as a successful model for laboratory incubators.
dc.identifier.doi10.3390/app14083466
dc.identifier.eissn2076-3417
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85192574796
dc.identifier.urihttps://doi.org/10.3390/app14083466
dc.identifier.urihttps://www.mdpi.com/2076-3417/14/8/3466
dc.identifier.urihttps://hdl.handle.net/11452/49992
dc.identifier.volume14
dc.identifier.wos001210346500001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalApplied Sciences-basel
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitakTUBITAK
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSystem-identification
dc.subjectSystem identification
dc.subjectPrediction error methods
dc.subjectLaboratory incubator
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectTechnology
dc.subjectChemistry, multidisciplinary
dc.subjectEngineering, multidisciplinary
dc.subjectMaterials science, multidisciplinary
dc.subjectPhysics, applied
dc.subjectChemistry
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectPhysics
dc.titleOffline identification of a laboratory incubator
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationef01a347-7859-4615-8b7d-52528de9d602
relation.isAuthorOfPublication.latestForDiscoveryef01a347-7859-4615-8b7d-52528de9d602

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Mantar_Yılmaz_2024.pdf
Boyut:
8.74 MB
Format:
Adobe Portable Document Format