Yayın:
Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: A comparative study

dc.contributor.authorMeng, Zeng
dc.contributor.authorLi, Gang
dc.contributor.authorZhong, Changting
dc.contributor.authorMirjalili, Seyedali
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYıldız, Ali Riza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0002-7493-2068
dc.contributor.researcheridAAH-6495-2019
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-10-23T05:49:24Z
dc.date.available2024-10-23T05:49:24Z
dc.date.issued2023-08-01
dc.description.abstractMultiobjective reliability-based design optimization (RBDO) is a research area, which has not been investigated in the literatures comparing with single-objective RBDO. This work conducts an exhaustive study of fifteen new and popular metaheuristic multiobjective RBDO algorithms, including non-dominated sorting genetic algorithm II, differential evolution for multiobjective optimization, multiobjective evolutionary algorithm based on decomposition, multiobjective particle swarm optimization, multiobjective flower pollination algorithm, multiobjective bat algorithm, multiobjective gray wolf optimizer, multiobjective multiverse optimization, multiobjective water cycle optimizer, success history-based adaptive multiobjective differential evolution, success history-based adaptive multiobjective differential evolution with whale optimization, multiobjective salp swarm algorithm, real-code population-based incremental learning and differential evolution, unrestricted population size evolutionary multiobjective optimization algorithm, and multiobjective jellyfish search optimizer. In addition, the adaptive chaos control method is employed for the above-mentioned algorithms to estimate the probabilistic constraints effectively. This comparative analysis reveals the critical technologies and enormous challenges in the RBDO field. It also offers new insight into simultaneously dealing with the multiple conflicting design objectives and probabilistic constraints. Also, this study presents the advantage and future development trends or incurs the increased challenge of researchers to put forward an effective multiobjective RBDO algorithm that assists the complex engineering system design.
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 11972143 11602076
dc.description.sponsorshipKey Laboratory of High-Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education
dc.description.sponsorshipFundamental Research Funds for the Central Universities JZ2020HGPA0112 JZ2020HGTA0080
dc.identifier.doi10.1007/s00158-023-03639-0
dc.identifier.issn1615-147X
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85168314009
dc.identifier.urihttps://doi.org/10.1007/s00158-023-03639-0
dc.identifier.urihttps://hdl.handle.net/11452/46885
dc.identifier.volume66
dc.identifier.wos001048629700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalStructural And Multidisciplinary Optimization
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPerformance-measure approach
dc.subjectApproximate programming strategy
dc.subjectLearning-based optimization
dc.subjectWater cycle algorithm
dc.subjectGrey wolf optimizer
dc.subjectDifferential evolution
dc.subjectGenetic algorithm
dc.subjectChaos control
dc.subjectSequential optimization
dc.subjectGlobal optimization
dc.subjectReliability-based design optimization
dc.subjectMultiobjective
dc.subjectMetaheuristic algorithm
dc.subjectEvolutionary algorithm
dc.subjectProbabilistic constraint
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, interdisciplinary applications
dc.subjectEngineering, multidisciplinary
dc.subjectMechanics
dc.subjectComputer science
dc.subjectEngineering
dc.titleApplication of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: A comparative study
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar