Yayın:
Classification and generation of soliton waves via convolutional neural networks

dc.contributor.authorAksoy, Abdullah
dc.contributor.authorAtıcı, Şeyma
dc.contributor.authorYiğit, Enes
dc.contributor.buuauthorAKSOY, ABDULLAH
dc.contributor.buuauthorATICI, ŞEYMA
dc.contributor.buuauthorYİĞİT, ENES
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Bölümü
dc.contributor.scopusid58085123500
dc.contributor.scopusid60045502200
dc.contributor.scopusid16032674200
dc.date.accessioned2025-11-28T12:10:50Z
dc.date.issued2025-01-01
dc.description.abstractThis study investigates the generation, identification, and classification of soliton waves by employing deep learning methods, specifically focusing on eliminating the uncertainty and inefficiency inherent in traditional trial-and-error approaches. Initially, an extensive dataset comprising sine, square, triangular, and soliton waveforms is created using a specialized experimental setup including a nonlinear transmission line (NLTL), a signal generator, and an oscilloscope. To enhance the robustness and generalization of the deep learning models, data augmentation techniques such as flipping, rotating, scaling, and cropping are applied. Among 20 evaluated pre-trained convolutional neural network architectures, DenseNet169 exhibited the highest accuracy and is selected for comprehensive training, validation, and testing. Results demonstrated the efficacy of DenseNet169, achieving a training accuracy of 0.988, validation accuracy of 1.000, and test accuracy of 0.984. This high level of performance underscores the potential of deep learning approaches to automate and optimize soliton wave identification and generation processes reliably.
dc.identifier.doi10.1109/ISAS66241.2025.11101930
dc.identifier.isbn[9798331514822]
dc.identifier.scopus2-s2.0-105014936277
dc.identifier.urihttps://hdl.handle.net/11452/57099
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc
dc.relation.journalIsas 2025 9th International Symposium on Innovative Approaches in Smart Technologies Proceedings
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSoliton
dc.subjectNonlinear transmission line(NLTL)
dc.subjectDeep learning (DL)
dc.subjectCommunication
dc.subject.scopusNonlinear Transmission Lines for High Power Applications
dc.titleClassification and generation of soliton waves via convolutional neural networks
dc.typeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü
local.indexed.atScopus
relation.isAuthorOfPublicationdaf946d3-f9a1-4f54-a589-9f81f8c77528
relation.isAuthorOfPublicationd691bc8f-d590-4d6a-94fe-4c8cf85f40bd
relation.isAuthorOfPublication1b0a8078-edd4-454b-b251-2d465c101031
relation.isAuthorOfPublication.latestForDiscoverydaf946d3-f9a1-4f54-a589-9f81f8c77528

Dosyalar