Yayın: Prediction of osnr in a 7-channel dwdm/udwdm transmission system under the combined effects of FWM, SRS and ASE
| dc.contributor.author | Kılınçarslan, Kübra | |
| dc.contributor.author | Karlık, Sait Eser | |
| dc.contributor.author | IEEE | |
| dc.contributor.buuauthor | KILINÇARSLAN, KÜBRA | |
| dc.contributor.buuauthor | KARLIK, SAİT ESER | |
| dc.contributor.department | Mühendislik Fakültesi | |
| dc.contributor.department | Elektrik Elektronik Mühendisliği Bölümü | |
| dc.contributor.researcherid | AAJ-2404-2021 | |
| dc.date.accessioned | 2025-01-16T11:21:43Z | |
| dc.date.available | 2025-01-16T11:21:43Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description | Bu çalışma, 15-18, Mayıs 2024 tarihlerinde Mersin[Türkiye]’de düzenlenen 32. IEEE Signal Processing and Communications Applications Conference (SIU) Kongresi‘nde bildiri olarak sunulmuştur. | |
| dc.description.abstract | In this study, an artificial neural network (ANN) model has been developed to predict the optical signal-to-noise ratio (OSNR) at the center channel of a 7-channel DWDM/UDWDM transmission system using an erbium-doped fiber amplifier (EDFA), taking into account the triple effects of four-wave mixing (FWM), stimulated Raman scattering (SRS), and amplified spontaneous emission (ASE) noise. The dataset used to predict the OSNR value contains 1200 distinct data and it has been created considering a 7-channel DWDM/UDWDM transmission system employing 1, 2, 4, and 5 EDFAs with channel spacing values of 3.125 GHz, 6.25 GHz, 12.5 GHz, 25 GHz, 50 GHz, and 100 GHz. Additionally, it has been assumed that the channel input power varied within the range from 0.1 mW to 5 mW. The obtained data has been divided into 70% for training, 15% for validation, and 15% for testing.In the study, the mean absolute error (MAE) has been calculated as 0.7935, the mean absolute percentage error (MAPE) has been computed as 9.3737, the mean squared error (MSE) has been obtained as 1.1487, and the root mean squared error (RMSE) has been found as 1.0718. | |
| dc.description.sponsorship | IEEE | |
| dc.description.sponsorship | IEEE Turkey | |
| dc.description.sponsorship | Koluman & Berdan | |
| dc.description.sponsorship | Loodos | |
| dc.description.sponsorship | Figes | |
| dc.description.sponsorship | Turkcell | |
| dc.description.sponsorship | Yıldırım Elektirik | |
| dc.identifier.doi | 10.1109/SIU61531.2024.10600691 | |
| dc.identifier.isbn | 979-8-3503-8896-1 | |
| dc.identifier.isbn | 979-8-3503-8897-8979-8-3503-8896-1 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10600691 | |
| dc.identifier.uri | https://ieeexplore.ieee.org/document/10600691 | |
| dc.identifier.uri | https://hdl.handle.net/11452/49500 | |
| dc.identifier.wos | 001297894700001 | |
| dc.indexed.wos | WOS.ISTP | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.journal | 32nd Ieee Signal Processing and Communications Applications Conference, Siu 2024 | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Fwm | |
| dc.subject | Srs | |
| dc.subject | Ase | |
| dc.subject | Udwdm/dwdm | |
| dc.subject | Artificial neural network | |
| dc.subject | Science & technology | |
| dc.subject | Technology | |
| dc.subject | Computer science, artificial intelligence | |
| dc.subject | Engineering, electrical & electronic | |
| dc.subject | Telecommunications | |
| dc.subject | Computer science | |
| dc.subject | Engineering | |
| dc.title | Prediction of osnr in a 7-channel dwdm/udwdm transmission system under the combined effects of FWM, SRS and ASE | |
| dc.type | conferenceObject | |
| dc.type.subtype | Proceedings Paper | |
| dspace.entity.type | Publication | |
| local.contributor.department | Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü | |
| local.indexed.at | WOS | |
| relation.isAuthorOfPublication | 56690106-ffaf-451c-85a7-9f2d3a6d190a | |
| relation.isAuthorOfPublication | 0f132f65-5fb4-4eca-b987-6c1578467eef | |
| relation.isAuthorOfPublication.latestForDiscovery | 56690106-ffaf-451c-85a7-9f2d3a6d190a |
