Yayın:
Hybrid neural network and genetic algorithm based machining feature recognition

dc.contributor.buuauthorÖztürk, Nursel
dc.contributor.buuauthorÖztürk, Ferruh
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.researcheridAAG-9336-2021
dc.contributor.researcheridAAG-9923-2021
dc.contributor.scopusid7005688805
dc.contributor.scopusid56271685800
dc.date.accessioned2021-10-07T11:27:01Z
dc.date.available2021-10-07T11:27:01Z
dc.date.issued2004-06
dc.description.abstractIn this research, neural networks (NNs) and genetic algorithms (GAs) are used together in a hybrid approach to reduce the computational complexity of feature recognition problem. The proposed approach combines the characteristics of evolutionary technique and NN to overcome the shortcomings of feature recognition problem. Consideration is given to reduce the computational complexity of network with specific interest to design the optimum network architecture using GA input selection approach. In order to evaluate the performance of the proposed system, experimental results are compared with previous NN based feature recognition research.
dc.identifier.citationÖztürk, N. ve Öztürk, F. (2004). “Hybrid neural network and genetic algorithm based machining feature recognition”. Journal of Intelligent Manufacturing, 15(3), 287-298.
dc.identifier.doi10.1023/B:JIMS.0000026567.63397.d5
dc.identifier.endpage298
dc.identifier.issn0956-5515
dc.identifier.issue3
dc.identifier.scopus2-s2.0-3543131353
dc.identifier.startpage287
dc.identifier.urihttps://doi.org/10.1023/B:JIMS.0000026567.63397.d5
dc.identifier.urihttps://link.springer.com/article/10.1023/B:JIMS.0000026567.63397.d5
dc.identifier.urihttp://hdl.handle.net/11452/22281
dc.identifier.volume15
dc.identifier.wos000221206200002
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.journalJournal of Intelligent Manufacturing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectEngineering
dc.subjectFeature recognition
dc.subjectNeural networks
dc.subjectGenetic input selection
dc.subjectManufacturing features
dc.subjectDesign
dc.subjectClassification
dc.subjectSystem
dc.subjectSearch
dc.subjectModel
dc.subjectBackpropagation
dc.subjectComputational complexity
dc.subjectComputer aided manufacturing
dc.subjectFeature extraction
dc.subjectGenetic algorithms
dc.subjectImage processing
dc.subjectMachining
dc.subjectMathematical models
dc.subjectParameter estimation
dc.subjectProblem solving
dc.subjectComputer aided production systems
dc.subjectFeature recognition
dc.subjectGenetic input selection
dc.subjectNetwork model
dc.subjectNeural networks
dc.subject.scopusComputer Aided Process Planning; Feature Recognition; Machining
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosEngineering, manufacturing
dc.titleHybrid neural network and genetic algorithm based machining feature recognition
dc.typeArticle
dc.wos.quartileQ3 (Computer science, artificial intelligence)
dc.wos.quartileQ2 (Engineering, manufacturing)
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama