Publication:
Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions

dc.contributor.authorLee, Won Suk
dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.buuauthorVardar, Ali
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.researcheridAAH-5008-2021
dc.contributor.researcheridR-8053-2016
dc.contributor.scopusid15848202900
dc.contributor.scopusid15049958800
dc.date.accessioned2021-11-01T11:16:09Z
dc.date.available2021-11-01T11:16:09Z
dc.date.issued2011-09
dc.description.abstractA machine vision algorithm was developed to detect and count immature green citrus fruits in natural canopies using color images. A total of 96 images were acquired in October 2010 from an experimental citrus grove in the University of Florida, Gainesville, Florida. Thirty-two of the total 96 images were selected randomly and used for training the algorithm, and 64 images were used for validation. Color, circular Gabor texture analysis and a novel 'eigenfruit' approach (inspired by the 'eigenface' face detection and recognition method) were used for green citrus detection. A shifting sub-window at three different scales was used to scan the entire image for finding the green fruits. Each sub-window was classified three times by eigenfruit approach using intensity component, eigenfruit approach using saturation component, and circular Gabor texture. Majority voting was performed to determine the results of the sub-window classifiers. Blob analysis was performed to merge multiple detections for the same fruit. For the validation set, 75.3% of the actual fruits were successfully detected using the proposed algorithm.
dc.description.sponsorshipYÖK
dc.identifier.citationKurtulmuş, F. vd. (2011). “Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions”. Computers and Electronics in Agriculture, 78(2), 140-149.
dc.identifier.endpage149
dc.identifier.issn0168-1699
dc.identifier.issn1872-7107
dc.identifier.issue2
dc.identifier.scopus2-s2.0-80052534605
dc.identifier.startpage140
dc.identifier.urihttps://doi.org/10.1016/j.compag.2011.07.001
dc.identifier.urihttps://dl.acm.org/doi/abs/10.1016/j.compag.2011.07.001
dc.identifier.urihttp://hdl.handle.net/11452/22539
dc.identifier.volume78
dc.identifier.wos000295758900003
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.collaborationYurt dışı
dc.relation.journalComputers and Electronics in Agriculture
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer vision
dc.subjectEigenfruit
dc.subjectFruit detection
dc.subjectGreen citrus
dc.subjectPrecision agriculture
dc.subjectYield mapping
dc.subjectRotation-invariant
dc.subjectFace detection
dc.subjectFilter design
dc.subjectFlorida [United States]
dc.subjectUnited States
dc.subjectCitrus
dc.subjectAlgorithms
dc.subjectColor
dc.subjectContent based retrieval
dc.subjectFace recognition
dc.subjectTextures
dc.subjectBlob analysis
dc.subjectCitrus detection
dc.subjectCitrus groves
dc.subjectColor images
dc.subjectDifferent scale
dc.subjectEigenfaces
dc.subjectFace detection and recognition
dc.subjectFlorida
dc.subjectGabor texture
dc.subjectGreen fruit
dc.subjectMachine vision algorithm
dc.subjectMajority voting
dc.subjectMultiple detection
dc.subjectUniversity of Florida
dc.subjectYield mapping
dc.subjectAlgorithm
dc.subjectComputer
dc.subjectEigenvalue
dc.subjectFruit
dc.subjectPrecision agriculture
dc.subjectTexture
dc.subjectYield response
dc.subjectCitrus fruits
dc.subjectAgriculture
dc.subjectComputer science
dc.subject.scopusHarvesting; End Effectors; Malus
dc.subject.wosAgriculture, multidisciplinary
dc.subject.wosComputer science, interdisciplinary applications
dc.titleGreen citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions
dc.typeArticle
dc.wos.quartileQ1 (Agriculture, multidisciplinary)
dc.wos.quartileQ2 (Computer science, interdisciplinary applications)
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: