Yayın:
RMVC: A validated algorithmic framework for decision-making under uncertainty

dc.contributor.authorDayioglu, Abdurrahman
dc.contributor.authorErdogan, Fatma Ozen
dc.contributor.authorCelik, Basri
dc.contributor.buuauthorDAYIOĞLU, ABDURRAHMAN
dc.contributor.buuauthorÖZEN ERDOĞAN, FATMA
dc.contributor.buuauthorÇELİK, BASRİ
dc.contributor.departmentFen-Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0001-8441-6406
dc.contributor.orcid0000-0001-7234-8063
dc.contributor.researcheridAAE-2600-2019
dc.contributor.researcheridAAG-8274-2021
dc.contributor.researcheridE-7601-2013
dc.date.accessioned2025-10-17T11:29:29Z
dc.date.issued2025-08-21
dc.description.abstractThe reliability of decision-making algorithms within soft set theory is fundamentally constrained by their underlying membership functions. Traditional binary approaches overlook the implicit connections between the attributes a candidate possesses and those it lacks-connections that can be inferred from the wider candidate pool. To address this core challenge, this paper puts forward the Relational Membership Value Calculation (RMVC), an algorithmic framework whose core is a fine-grained relational membership function. Our approach moves beyond binary logic to capture these nuanced interrelationships. We provide a rigorous theoretical analysis of the proposed algorithm, including its computational complexity and robustness, which is validated through a comprehensive sensitivity analysis. Crucially, a comparative analysis using the Gini Index quantitatively demonstrates that our method provides significantly higher granularity and discriminatory power on a representative case study. The RMVC is implemented as an open-source Python program, providing a foundational tool to enhance the reasoning capabilities of AI-driven decision support and expert systems.
dc.identifier.doi10.3390/math13162693
dc.identifier.issue16
dc.identifier.scopus2-s2.0-105014402381
dc.identifier.urihttps://doi.org/10.3390/math13162693
dc.identifier.urihttps://hdl.handle.net/11452/55701
dc.identifier.volume13
dc.identifier.wos001558106300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalMathematics
dc.subjectFuzzy soft sets
dc.subjectReduction
dc.subjectSoft set theory
dc.subjectRelational membership function
dc.subjectDecision-making algorithms
dc.subjectUncertainty modeling
dc.subjectDecision support systems
dc.subjectOpen-source AI tools
dc.subjectScience & Technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleRMVC: A validated algorithmic framework for decision-making under uncertainty
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen-Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication49930707-babd-464e-8aaf-1a669642166e
relation.isAuthorOfPublication65a996eb-ea25-4041-adef-53b553f3a124
relation.isAuthorOfPublicationd177d421-67ca-41f0-9778-94b01d648166
relation.isAuthorOfPublication.latestForDiscovery49930707-babd-464e-8aaf-1a669642166e

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Dayioglu_vd_2025.pdf
Boyut:
520.81 KB
Format:
Adobe Portable Document Format