Publication:
Analitik katsayılı kısmi diferensiyel denklemler

dc.contributor.advisorHızlıyel, Sezayi
dc.contributor.authorGüzel, Sinem
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.date.accessioned2019-11-14T13:31:09Z
dc.date.available2019-11-14T13:31:09Z
dc.date.issued2014
dc.description.abstractBu tez beş bölümden oluşmaktadır. İlk bölüm giriş kısmına ayrılmıştır. İkinci bölümde, bazı temel kavram ve tanımlar, ikinci mertebeden lineer eliptik kısmi diferensiyel denklemlerin kanonik forma indirgenmesi ve kanonik formdaki genel temsilleri verilmiştir. Üçüncü bölümde, Volterra tipindeki integral denklemlerin çözümleri için ardışık yaklaşmalar metodu verilmiştir ve ikinci mertebeden, analitik katsayılı, lineer, eliptik, homojen denklemin Rieman fonksiyonu Volterra tipi bir integral denklem çözülerek bulunmuştur. Dördüncü bölümde, bu denklemin argümanları kompleks değerli bir bölge içine analitik devamı ve basit ve çok bağlantılı bölgelerde yine aynı denklemin çözümlerinin temel temsilleri elde edilmiştir. Son bölümde, katsayıların ve fonksiyonların reel değerli olması durumu incelenmiş ve Helmholtz ile Kirchoff denklemlerinin regüler çözümleri için genel temsil formülleri türetilmiştir.
dc.description.abstractThis thesis consists of five chapters. The first chapter is devoted to the introduction. In the second chapter, some basic concepts and definitions, reduction to canonical form of the second order linear partial differential equations and the general representaion in canonical form are given. In the third section, the method of successive approximation for the solution of the integral equation of Volterra type are given and the Riemann function of second order elliptic homogeneous linear partial differential equations with analytical coefficients is found by solving a Volterra type integral equation. In the fourth chapter, analytic continuation of the solution of this equation into the domain of the complex values of arguments and general representation of the solution of this equation in simply and multiply connected domains have been obtained. In the final chapter, the case of real-valued coefficients and functions have been examined and the general represantations formulas is derived for the regular solutions of the Helmholtz and Kirchoff equations.
dc.format.extentIV, 75 sayfa
dc.identifier.citationGüzel, S. (2014). Analitik katsayılı kısmi diferensiyel denklemler. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/1648
dc.language.isotr
dc.publisherUludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRieman fonksiyonu
dc.subjectKanonik forma indirgeme
dc.subjectMetaharmonik fonksiyon
dc.subjectRiemann functions
dc.subjectReduction to canonical form
dc.subjectMetaharmonic functions
dc.titleAnalitik katsayılı kısmi diferensiyel denklemler
dc.title.alternativePartial differential equations with analytical coefficients
dc.typemasterThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Matematik Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
373756.pdf
Size:
3.54 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: