Yayın:
Fetal state assessment from cardiotocogram data using artificial neural networks

dc.contributor.buuauthorYılmaz, Ersen
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.researcheridG-3554-2013
dc.contributor.scopusid56965095300
dc.date.accessioned2022-12-07T12:41:05Z
dc.date.available2022-12-07T12:41:05Z
dc.date.issued2016-07-06
dc.description.abstractCardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models' performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.
dc.identifier.citationYılmaz, E. (2016). "Fetal state assessment from cardiotocogram data using artificial neural networks". Journal of Medical and Biological Engineering, 36(6), Special Issue, 820-832.
dc.identifier.doi10.1007/s40846-016-0191-3
dc.identifier.endpage832
dc.identifier.issn1609-0985
dc.identifier.issn2199-4757
dc.identifier.issue6, Special Issue
dc.identifier.scopus2-s2.0-85008466039
dc.identifier.startpage820
dc.identifier.urihttps://doi.org/10.1007/s40846-016-0191-3
dc.identifier.urihttps://link.springer.com/article/10.1007/s40846-016-0191-3
dc.identifier.urihttp://hdl.handle.net/11452/29736
dc.identifier.volume36
dc.identifier.wos000392085100008
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.journalJournal of Medical and Biological Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEngineering
dc.subjectCardiotocogram
dc.subjectFetal state assessment
dc.subjectClinical decision support system
dc.subjectArtificial neural network
dc.subjectFeedforward networks
dc.subjectClassification
dc.subjectPerformance
dc.subjectArtificial intelligence
dc.subjectDecision support systems
dc.subjectFetal monitoring
dc.subjectLearning systems
dc.subjectArtificial neural network models
dc.subjectCardiotocogram
dc.subjectClinical decision support systems
dc.subjectGeneralized regression neural networks
dc.subjectMulti-layer perceptron neural networks
dc.subjectProbabilistic neural networks
dc.subjectRepresentation techniques
dc.subjectState assessment
dc.subjectNeural networks
dc.subject.emtreeArtificial neural network
dc.subject.emtreeAttention
dc.subject.emtreeClassification
dc.subject.emtreeClinical decision support system
dc.subject.emtreeComparative study
dc.subject.emtreeFetus
dc.subject.emtreeHuman
dc.subject.emtreeNervous system
dc.subject.emtreePerceptron
dc.subject.emtreeRunning
dc.subject.emtreeValidation process
dc.subject.scopusCardiotocography; Fetal Heart Rate; Pregnancy
dc.subject.wosEngineering, biomedical
dc.titleFetal state assessment from cardiotocogram data using artificial neural networks
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama