Yayın:
Development of a prediction method of Rayleigh damping coefficients for free layer damping coatings through machine learning algorithms

dc.contributor.authorArslan, Ersen
dc.contributor.authorKızıltaş, Eda Çapa
dc.contributor.buuauthorYılmaz, İlhan
dc.contributor.buuauthorÇavdar , Kadir
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Ana Bilim Dalı
dc.contributor.departmentMakine Mühendisliği
dc.contributor.orcid0000-0002-0558-4346
dc.contributor.orcid0000-0001-9126-0315
dc.contributor.researcheridAAI-1681-2020
dc.contributor.researcheridA-4627-2018
dc.contributor.scopusid57207725845
dc.contributor.scopusid56242537600
dc.date.accessioned2024-02-22T12:02:08Z
dc.date.available2024-02-22T12:02:08Z
dc.date.issued2020-01-15
dc.description.abstractApplication of damping coatings on metal sheets is a commonly used method to suppress the undesirable vibration and noise levels in various industries. As numerical simulations have a vital role while designing a high-quality product with fewer costs, an accurate and practical way of modelling such type of structures is necessary. It was aimed to develop a methodology that helps to define damping parameters of such viscoelastic coating layers through Rayleigh damping coefficients. Machine learning tools were considered to find a prediction formula which yields Rayleigh coefficients based on thicknesses. For this purpose, several tests were conducted with different coating thicknesses on steel plates. In parallel, a great number of simulations were performed not only to make comparisons with the reference values from tests but also to feed the learning algorithms with the data sets. The results were compared including the ones from the Oberst equation. The results from the machine learning showed significantly better matching performance with the tests, as there seems to be a limitation problem for Oberst accuracy.
dc.identifier.citationYılmaz, İ. vd. (2020). "Development of a prediction method of Rayleigh damping coefficients for free layer damping coatings through machine learning algorithms". International Journal of Mechanical Sciences, 166.
dc.identifier.doi10.1016/j.ijmecsci.2019.105237
dc.identifier.issn0020-7403
dc.identifier.issn1879-2162
dc.identifier.scopus2-s2.0-85073684019
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0020740319313487
dc.identifier.urihttps://hdl.handle.net/11452/39913
dc.identifier.volume166
dc.identifier.wos000514758000020
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherPergamon-Elsevier Science
dc.relation.collaborationSanayi
dc.relation.journalInternational Journal of Mechanical Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRayleigh damping
dc.subjectViscous layers
dc.subjectMachine learning
dc.subjectFree layer damping
dc.subjectSupport vector machine
dc.subjectMechanical-porperties
dc.subjectViscoelastic materials
dc.subjectTopology optimization
dc.subjectFinite-elements
dc.subjectVibration
dc.subjectModel
dc.subjectComposite
dc.subjectProperty
dc.subjectEnsemble
dc.subjectCoatings
dc.subjectDamping
dc.subjectLearning systems
dc.subjectMachine learning
dc.subjectProduct design
dc.subjectThickness measurement
dc.subjectFree layer damping
dc.subjectHigh-quality products
dc.subjectMatching performance
dc.subjectPrediction methods
dc.subjectRayleigh coefficients
dc.subjectRayleigh damping
dc.subjectVisco-elastic coatings
dc.subjectViscous layers
dc.subjectLearning algorithms
dc.subjectEngineering
dc.subjectMechanics
dc.subject.scopusDamping; Sandwich Beam; Nonlinear Eigenvalue Problem
dc.subject.wosEngineering, mechanical
dc.subject.wosMechanics
dc.titleDevelopment of a prediction method of Rayleigh damping coefficients for free layer damping coatings through machine learning algorithms
dc.typeArticle
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Makine Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama