Publication:
An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry

dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridF-7426-2011
dc.contributor.scopusid7102365439
dc.date.accessioned2021-10-22T09:34:08Z
dc.date.available2021-10-22T09:34:08Z
dc.date.issued2009-03-19
dc.description.abstractThe focus of this research is on a hybrid method combining immune algorithm with a hill climbing local search algorithm for solving complex real-world optimization problems. The objective is to contribute to the development of more efficient optimization approaches with the help of immune algorithm and hill climbing algorithm. The hybrid algorithm combines the exploration speed of immune algorithm with the powerful ability to avoid being trapped in local minimum of hill climbing. This hybridization results in a solution that leads to better parameter values. This research is the first application of immune algorithm to the optimization of machining parameters in turning and also shape design optimization problems in the literature. The results of single-objective benchmark problem, multi-objective disc-brake problem, an automobile shape design optimization problem taken from the literature and case studies for multi-pass turning operation have demonstrated the superiority of the proposed hybrid over the other techniques in terms of solution quality and convergence rates.
dc.identifier.citationYıldız, A. R. (2009). "An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry". Journal of Materials Processing Technology, 209(6), 2773-2780.
dc.identifier.endpage2780
dc.identifier.issn0924-0136
dc.identifier.issue6
dc.identifier.scopus2-s2.0-61349105239
dc.identifier.startpage2773
dc.identifier.urihttps://doi.org/10.1016/j.jmatprotec.2008.06.028
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0924013608005268
dc.identifier.urihttp://hdl.handle.net/11452/22439
dc.identifier.volume209
dc.identifier.wos000264674500004
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier Science
dc.relation.journalJournal of Materials Processing Technology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHybrid method
dc.subjectImmune algorithm
dc.subjectDisc-brake
dc.subjectShape optimization
dc.subjectMulti-pass turning
dc.subjectMultipass turning operations
dc.subjectGenetic algorithm
dc.subjectMachining parameters
dc.subjectSystem
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectBenchmarking
dc.subjectBrakes
dc.subjectHybrid sensors
dc.subjectLearning algorithms
dc.subjectTurning
dc.subjectBench-mark problems
dc.subjectConvergence rates
dc.subjectHill climbing algorithms
dc.subjectHill-climbing
dc.subjectHill-climbing optimizations
dc.subjectHybrid algorithms
dc.subjectHybrid method
dc.subjectImmune algorithm
dc.subjectLocal minimums
dc.subjectLocal search algorithms
dc.subjectMulti objectives
dc.subjectMulti-pass turning operations
dc.subjectOptimization approaches
dc.subjectOptimization problems
dc.subjectParameter values
dc.subjectReal-world optimizations
dc.subjectShape designs
dc.subjectSolution qualities
dc.subjectShape optimization
dc.subject.scopusMachining; Chatter; Turning
dc.subject.wosEngineering, industrial
dc.subject.wosEngineering, manufacturing
dc.subject.wosMaterials science, multidisciplinary
dc.titleAn effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
dc.typeArticle
dc.wos.quartileQ1 (Engineering, manufacturing)
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: